Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.
We hypothesize that early in prostate cancer progression, increased expression of YB-1 may increase P-gp activity which may in turn lower androgen levels in the prostate tumor cells. Suppression of androgen levels may activate cell survival pathways and lead to an adaptive survival advantage of androgen independent prostate cancer cells following androgen ablation therapy.
Drug resistance remains a major clinical challenge for cancer treatment. One mechanism by which tumor cells develop resistance to cytotoxic agents and radiation is related to resistance to apoptosis. Apoptosis is a well-organised process of cell death pre-programmed inside the cell. Apoptosis can be initiated either by activation of death receptors on the cell surface membranes (extrinsic pathway) or through a series of cellular events primarily processed at mitochondria (intrinsic pathway). Apoptosis has been shown to be important for tumorigenesis and cancer treatment. Defects in apoptosis can result in the expansion of a population of neoplastic cells. However, because the death of tumor cells induced by chemotherapy and radiotherapy is largely mediated by activation of apoptosis, inhibition of apoptosis will make tumor cells resistant to anti-tumor treatment. Herein, we will review the molecular changes that have the potential to cause apoptotic dysregulation, including activation of antiapoptotic factors (Bcl-2, BCLX(L), Bfl1/A1 etc.), inactivation of pro-apoptotic effectors (p53, p53 pathway), and /or reinforcement of survival signals (Survivin, FLIP, NF-kappaB etc). Furthermore, we will discuss therapeutic intervention and/or strategies that can lower the threshold for apoptosis of tumor cells that could became useful approaches to treat cancer with special emphasis placed on the important priority to develop new cancer therapeutics toward tumor stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.