Controlled orientation and alignment of rod‐shaped plasmonic nanoparticles are of great interest for many applications. Herein, it is demonstrated that the nonlinear optical response of gold nanorod suspensions is dynamically controlled by electric field‐induced orientation. Merely by switching incident light polarization, the longitudinal and transverse surface plasmon resonance (SPR) absorption peaks are modulated with opposite trends, and the resulting optical nonlinearity is revealed from self‐trapping of plasmonic resonant solitons. Moreover, even with a very low concentration of fluorescent molecules, a significant increase in the fluorescent signal is observed with a transmittance‐type volume detection scheme. Such an enhancement is attributed to a combined action of optical force‐induced nonlinearity and electric field‐induced nanorod orientation, as explained by the theoretical analyses. Herein, new possibilities for engineering nonlinear plasmonic soft matter and detecting low‐concentration (yet a large total number of moleculesas needed) fluorescent samples are brought out.
We experimentally demonstrate self-trapping of light, as a result of plasmonic resonant optical nonlinearity, in both aqueous and organic (toluene) suspensions of gold nanorods. The threshold power for soliton formation is greatly reduced in toluene as opposed to aqueous suspensions. It is well known that the optical gradient forces are optimized at off-resonance wavelengths at which suspended particles typically exhibit a strong positive (or negative) polarizability. However, surprisingly, as we tune the wavelength of the optical beam from a continuous-wave (CW) laser, we find that the threshold power is reduced by more than threefold at the plasmonic resonance frequency. By analyzing the optical forces and torque acting on the nanorods, we show theoretically that it is possible to align the nanorods inside a soliton waveguide channel into orthogonal orientations by using merely two different laser wavelengths. We perform a series of experiments to examine the transmission of the soliton-forming beam itself, as well as the polarization transmission spectrum of a low-power probe beam guided along the soliton channel. It is found that the expected synthetic anisotropic properties are too subtle to be clearly observed, in large part due to Brownian motion of the solvent molecules and a limited ordering region where the optical field from the self-trapped beam is strong enough to overcome thermodynamic fluctuations. The ability to achieve tunable nonlinearity and nanorod orientations in colloidal nanosuspensions with low-power CW laser beams may lead to interesting applications in all-optical switching and transparent display technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.