In the dehiscent anthers of Strelitzia reginae Ait. thread–like formations occur among the pollen grains. The threads are derived from specialized epidermal cells in the stomium region. These cells are liberated from the normal epidermal cells and from each other along their radial walls. By remaining attached to each other along the transversal walls the cells form multicellular threads.
Storage products occur in the thread–forming cells as starch grains and protein crystals in plastids. After their release the threads lose these products and are strongly vacuolated. Finally their cell content disintegrates.
Trimezia fosteriana is a self‐incompatible plant with an open style. The stigma was found to be receptive for approx. three hours. Pollen tube growth in the entire transmitting tract was followed with LM, SEM and TEM. The cuticle that covers the mature papillae is continuous but in the rest of the transmitting tissue it is thin and ruptured. The pollen tubes grow in a mucilage mixed with cuticle remnants. In the style, however, larger parts of a cuticle film remains which gives the impression that pollen tube growth occurs under a cuticle. The secretion contains proteins and carbohydrates including pectic substances. The pollen tube growth rates were estimated to 2 mm/hour in the stigma, 1–2 mm/hour in the style and 0.5 mm/hour in the ovary.
An ultrastructural investigation of the entire transmitting tract in Trimezia fosteriana (Iridaceae) was undertaken. The transmitting tissue is secretory but transfer cells do not occur at any level. With exception for the stigma papillae, the cells are covered with large amounts of secretory products. The papillae have a thick and ridged cuticle. The cuticle in the rest of the transmitting tract is thin and detached from the cell wall by the secretory products. It is more or less ruptured in the secretory parts of the stigma and ovary. In the stylar canal the major part of the cuticle is continuous and covers the secretory products. The occurence of a large amount of vesicles in the stigma transmitting tissue cells is interpreted as a result of high dictyosome activity. An electron opaque material is produced in the dictyosomes and appears in vesicles and vacuoles but also between the plasma membrane and the cell walls in the stigma. A small amount of such material is present in the cell walls. Corresponding material is also present in the style and the ovary but declines basipetally. Plastids with strongly electron opaque plastoglobules are present at all levels in the transmitting tract.
Observations of the transmitting tract cells in Trimezia fosteriana were made from the pre‐secretory stage until anthesis. Secretory products appear about 14 days before anthesis in all parts of the pistil. Simultaneously starch disappears from the plastids and the dictyosomes are surrounded by more and larger vesicles than before. In the beginning of the secretory stage multivesicular bodies may be in contact with ER profiles and an ER origin is therefore presumed. Later during the secretory stage the multivesicular bodies are larger and more abundant. Their envelope is often partly fused with the plasma membrane and vesicle swarms are common on the outside of it. Close to flower opening many organelles change in appearence. RER becomes more abundant and the mitochondrial matrix highly electron dense and the cristae expanded. Starch grains reappear and large ones are common in the stigma and ovary plastids. The dictyosomes are numerous and surrounded by the largest vesicles observed during the secretory stage. Osmiophilic granules are common in the dictyo‐some vesicles and under the cell walls abutting the transmitting tract. In the ovary they are present one week before anthesis. In the stigma and style corresponding granules of high electron density appears at the day of flower opening. The extracellular secretory product contains fibrillar and granular substances consisting of carbohydrates, including pectic substances, and proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.