We hypothesized that lipids and bile acids in meconium may induce pulmonary insufficiency in newborns. Because albumin may bind these components we studied the effect of albumin on meconium-induced lung injury in piglets. We measured concentration of FFA in the meconium (110 mg dry weight/mL) and added albumin to provide a molar FFA to albumin ratio of 1:1. Newborn piglets, 0-2 d of age, artificially ventilated and exposed to hypoxemia by ventilation with 8% O2, were randomized to group A receiving meconium (n = 12) or group B receiving meconium + albumin (n = 12), 3 mL/kg intratracheally. The animals were reoxygenated for 8 h. Reoxygenation was started when mean blood pressure was <20 mm Hg or base excess was <-20 mM. Pulmonary function was assessed in parallel with pulmonary hemodynamics. From the start of reoxygenation and the next 8 h we found a significant difference (by ANOVA) between the two groups in oxygenation index (p = 0.005), with an increase from 1.6 +/- 0.2 to 6.1 +/- 6.8 (p = 0.04) in the meconium group and from 1.8 +/- 0.3 to 3.1 +/- 3.1 (NS) in meconium + albumin group. There were also significant differences (by ANOVA) between the groups in favor of the treatment group concerning need of inspired fraction of O2, mean airway pressure, dynamic compliance of the respiratory system, time constant, ventilation index, and pulmonary vascular resistance. In conclusion, albumin given concurrently with meconium significantly reduced detrimental effects of meconium aspiration in the lungs of newborn piglets.
The effects of blocking endothelin (ET) receptors in pulmonary circulation during hypoxemia and reoxygenation were studied in five groups of piglets. Ten minutes before hypoxemia, the Hyp group (n = 10) was given saline and the 1-mg (n = 9) and 5-mg group (n = 9), respectively, were given 1 and 5 mg/kg i.v. SB 217242 (an ET receptor antagonist). Two groups served as normoxic controls. The piglets were ventilated with 8% O2 until base excess was <-20 mmol/L or mean arterial blood pressure was <20 mm Hg. Reoxygenation was performed with air. The increase of mean pulmonary artery pressure was significantly attenuated during hypoxemia and reoxygenation in the 1-mg group (p = 0.006). The pulmonary vascular resistance index increased significantly at the end of hypoxemia in the Hyp and 5-mg groups but was comparable to baseline in the 1-mg group. During the study period, the changes in pulmonary vascular resistance index were significantly attenuated in the 1-mg group compared with the 5-mg group. Stroke volume index was significantly attenuated compared with baseline in the 5-mg group during both hypoxemia and reoxygenation, whereas, in the Hyp and 1-mg group, stroke volume index was attenuated only at the end of hypoxemia. During hypoxemia, plasma ET-1 decreased from 1.9+/-0.2 to 1.3+/-0.3 ng/L (p = 0.008) in the Hyp group, remained unchanged in the 1-mg group, and increased from 1.6+/-0.2 to 6.6+/-1.6 ng/L (p = 0.008) in the 5-mg group. We conclude that blocking ET receptors attenuates pulmonary vasoconstriction during hypoxemia and reoxygenation in piglets.
ABCA3 mutations were the basis for lung disease in all three patients. Children with lung disease due to ABCA3 deficiency may not have symptoms at birth. The finding of five novel mutations indicates allelic heterogeneity for ABCA3 mutations within the Norwegian population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.