Diets causing milk fat depression (MFD) are known to alter ruminal lipid metabolism leading to the formation of specific biohydrogenation intermediates that exert antilipogenic effects. Several isomers of conjugated linoleic acid (CLA), namely trans-10, cis-12 CLA, cis-10, trans-12 CLA, and trans-9, cis-11 CLA, inhibit mammary lipogenesis in the lactating cow, but ruminal outflow of these biohydrogenation intermediates does not account entirely for the reductions in milk fat synthesis during diet-induced MFD. Milk fat trans-10 18:1 concentrations are consistently increased on diets that cause MFD, suggesting a possible role in the regulation of milk fat secretion. Three rumen-fistulated cows in mid lactation were used in a 3 x 3 Latin square to evaluate the effects of a mixture of 18:1 fatty acid methyl esters (FAME) on milk fat synthesis. Experimental treatments consisted of abomasal infusions of ethanol (control), 6 g/d of trans-10, cis-12 CLA (positive control; CLA), or 247 g/d of a mixture of 18:1 FAME containing (% fatty acids) cis-9 (9.45), cis-12 (3.35), trans-10 (37.3), trans-11 (37.4), and trans-12 (2.66) as major isomers (T181 treatment). Administration of the T181 treatment supplied 92.1 g/d of trans-10 18:1. Infusions were conducted over a 5-d period with a 9-d interval between treatments. Treatments had no effect on dry matter intake, milk yield, or milk protein. Relative to the control, abomasal infusion of T181 and trans-10, cis-12 CLA treatments reduced milk fat secretion by 19.5 and 41.5%, respectively. Even though a direct cause and effect on mammary lipogenesis could not be established, comparisons with published data and considerations of the relative abundance of constituent FAME in treatment T181 implicated trans-10 18:1 as the isomer responsible. In conclusion, current data suggest that trans-10 18:1 potentially exerts antilipogenic effects and may contribute to the reduction in milk fat synthesis during diet-induced MFD in the lactating cow.
The trans-10,cis-12 isomer of conjugated linoleic acid (CLA) decreases TAG accumulation in 3T3-L1 adipocytes, reduces lipid accretion in growing animals, and inhibits milk fat synthesis in lactating mammals. However, there is evidence to suggest that other FA may also exert antilipogenic effects. In the current experiment, the effects of geometric isomers of 10,12 CLA on milk fat synthesis were examined using four Holstein-British Friesian cows in a 4 x 4 Latin Square experiment with 14-d periods. Treatments consisted of abomasal infusions of skim milk, or skim milk containing trans-10,cis-12 CLA (T1), trans-10,trans-12 CLA (T2), or a mixture of predominantly 10,12 isomers containing (g/l00 g) trans-10,cis-12 (35.0), cis-10,trans-12 (23.2), trans-10,trans-12 (14.9), and cis-10,cis-12 (5.1). CLA supplements were prepared from purified ethyl linoleate and infused as nonesterified FA. Infusions were conducted over a 4-d period with a 10-d interval between treatments and targeted to deliver 4.5 g/d of 10,12 CLA isomers. Compared with the control, trans-10, trans-12 CLA had no effect (P> 0.05) on milk fat yield, whereas treatments T1 and T3 depressed (P <0.05) milk fat content (19.8 and 22.9%, respectively) and decreased milk fat output (20.8 and 21.3%, respectively). Comparable reductions in milk fat synthesis to 4.14 and 1.80 g trans-10,cis-12/d supplied by treatments T1 and T3 indicate that other 10,12 geometric isomers of CLA have the potential to exert antilipogenic effects. The relative abundance of cis-10,trans-12 CLA in treatment T3 and the low transfer efficiency of this isomer into milk suggest that cis-10,trans-12 CLA was the active component..Peer reviewe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.