In this paper, we describe a class of Wiener functionals that are 'indeterminate by their moments', that is, whose distributions are not uniquely determined by their moments. In particular, it is proved that the integral of a geometric Brownian motion is indeterminate by its moments and, moreover, shown that previous proofs of this result are incorrect. The main result of this paper is based on geometric inequalities in Gauss space and on a generalization of the Krein criterion due to H. L. Pedersen.
Suppose that {X
s
, 0 ≤ s ≤ T} is an m-dimensional geometric Brownian motion with drift, μ is a bounded positive Borel measure on [0,T], and ϕ : ℝ
m
→ [0,∞) is a (weighted) l
q
(ℝ
m
)-norm, 1 ≤ q ≤ ∞. The purpose of this paper is to study the distribution and the moments of the random variable Y given by the L
p
(μ)-norm, 1 ≤ p ≤ ∞, of the function s ↦ ϕ(X
s
), 0 ≤ s ≤ T. By using various geometric inequalities in Wiener space, this paper gives upper and lower bounds for the distribution function of Y and proves that the distribution function is log-concave and absolutely continuous on every open subset of the distribution's support. Moreover, the paper derives tail probabilities, presents sharp moment inequalities, and shows that Y is indetermined by its moments. The paper will also discuss the so-called moment-matching method for the pricing of Asian-styled basket options.
This paper studies the relative error in the crude Monte Carlo pricing of some familiar European path-dependent multiasset options. For the crude Monte Carlo method it is well known that the convergence rate O(n −1/2 ), where n is the number of simulations, is independent of the dimension of the integral. This paper also shows that for a large class of pricing problems in the multiasset Black-Scholes market the constant in O(n −1/2 ) is independent of the dimension. To be more specific, the constant is only dependent on the highest volatility among the underlying assets, time to maturity, and degree of confidence interval.
Suppose that {Xs, 0 ≤ s ≤ T} is an m-dimensional geometric Brownian motion with drift, μ is a bounded positive Borel measure on [0,T], and ϕ : ℝm → [0,∞) is a (weighted) lq(ℝm)-norm, 1 ≤ q ≤ ∞. The purpose of this paper is to study the distribution and the moments of the random variable Y given by the Lp(μ)-norm, 1 ≤ p ≤ ∞, of the function s ↦ ϕ(Xs), 0 ≤ s ≤ T. By using various geometric inequalities in Wiener space, this paper gives upper and lower bounds for the distribution function of Y and proves that the distribution function is log-concave and absolutely continuous on every open subset of the distribution's support. Moreover, the paper derives tail probabilities, presents sharp moment inequalities, and shows that Y is indetermined by its moments. The paper will also discuss the so-called moment-matching method for the pricing of Asian-styled basket options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.