The Discrete Element Method (DEM) is used for predicting the compaction behavior of two types of spray dried cemented carbide granules. The material model of the granules is determined by micromechanical experiments. Firstly, compression tests are made on single granules giving information of the deformation behavior at relatively small deformations. For larger deformations, nanoindentation tests are made to give further information of the constitutive behavior which shows a strong hardening behavior at high strains.The material model is implemented in a FE model of two particles in contact and the relation between contact force and indentation depth is exported to a DEM program. The DEM program is used to simulate presently performed uniaxial die compaction experiments where the geometry of the die is taken into account. Excellent agreement is found between the experiments and the numerical predictions in the range where results from DEM simulations are valid.
Scratching of thin film/substrate structures is studied theoretically and numerically. The results are discussed in connection to delamination initiation and in particular subsequent growth at scratching. The material behavior of the film is described by classical elastoplasticity accounting for large deformations. The deformation of the substrate is neglected indicating that the results are pertinent to soft thin films. The numerical investigation is performed using the finite element method (FEM) and the numerical strategy is discussed in some detail. The results from this study show that delamination growth at thin film scratching is a stable feature with crack arrest occurring at a decreasing load.
In the present study contact between elastic-plastic dissimilar spherical particles are investigated. The investigation is based on analytical and numerical methods and in the latter case in particular the finite element method. The results presented are pertinent to force-displacement relations at contact when elastic and plastic deformations are of equal magnitude. Especially, hard metal particles are considered with a typical application area being analysis of powder compaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.