Powder metal gears have a lower density than conventional steel gears due to their intrinsic porosity from the manufacturing process. This also results in a lower elasticity leading to larger deformations and lower contact pressure in a gear contact. By using different modelling tools (namely FEA and available commercial software), the load behavior along the line of action is studied to compare the influence of lower elasticity with standard wrought steel elasticity for FZG-C type gears. A further step is taken analyzing this effect on the mean coefficient of friction through the recalculation of the gear mesh power loss factor. Conclusions observed are differences in load distribution and marginal differences in the gear mesh power loss factor when comparing sintered and wrought steel FZG-C type gears. Sintered steel showed a marginally longer line of action and simultaneously a decrease of the single tooth contact length when compared to wrought steel, while differences in the gear mesh power loss factor proved non-essential due to the spread in previously measured experimental data.
To increase the efficiency of a gearbox, research on gear mesh loss is of importance. Britton et al. concluded that the surface finishing method affects the gear mesh efficiency. The efficiency benefits of superfinishing a surface and reducing the surface roughness have been reported by Kahraman. A novel method for calculating the bearing loss torque was proposed by Tu et al. Andersson et al. found that the efficiency can vary between 2 and 5% during repeated efficiency tests due to variations in the assembly process. This work investigates how the honing surface finishing process and DIN 3962 quality class affect the gear mesh efficiency by performing tests in an FZG back-to-back test rig. Two materials, a powder metal and a wrought steel, were tested. All gears were finished using a honing process and sorted according the measured quality class. Powder metal gears of class 6, 7, 8, and !9 and wrought steel gears of class 6, 7, and !9 were tested. The efficiency were calculated from measuring the torque required to maintain a constant velocity of the FZG test rig. The results from the efficiency tests showed no significant difference in efficiency between the wrought steel and powder metal steel gears. In addition, no obvious correlation between the DIN 3962 quality class and the gear mesh efficiency could be found. When examining the wrought steel material it was found that the reproducibility of the efficiency was comparable to the assembly error of the test rig, despite the variation in quality class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.