Massive multi-user (MU) multiple-input multipleoutput (MIMO) systems are one possible key technology for next generation wireless communication systems. Claims have been made that massive MU-MIMO will increase both the radiated energy efficiency as well as the sum-rate capacity by orders of magnitude, because of the high transmit directivity. However, due to the very large number of transceivers needed at each basestation (BS), a successful implementation of massive MU-MIMO will be contingent on of the availability of very cheap, compact and power-efficient radio and digital-processing hardware. This may in turn impair the quality of the modulated radio frequency (RF) signal due to an increased amount of power-amplifier distortion, phase-noise, and quantization noise.In this paper, we examine the effects of hardware impairments on a massive MU-MIMO single-cell system by means of theory and simulation. The simulations are performed using simplified, well-established statistical hardware impairment models as well as more sophisticated and realistic models based upon measurements and electromagnetic antenna array simulations.
This paper proposes three novel models for behavioral modeling and digital pre-distortion (DPD) of nonlinear 2 2 multiple-input multiple-output (MIMO) transmitters in the presence of crosstalk. The proposed models are extensions of the singleinput single-output generalized memory polynomial model. Three types of crosstalk effects were studied and characterized as linear, nonlinear, and nonlinear & linear crosstalk. A comparative study was performed with previously published models for the linearization of crosstalk in a nonlinear 2 2 MIMO transmitter. The experiments indicate that, depending on the type of crosstalk, the selection of the correct model in the transmitter is necessary for behavioral modeling and sufficient DPD performance. The effects of coherent and partially noncoherent signal generation on the performance of DPD were also studied. For crosstalk levels of 30 dB, the difference in the normalized mean square error and adjacent channel power ratio was found to be 3-4 dB between coherent and partially noncoherent signal generation.
In this paper different evaluation criteria for power amplifier behavioral modeling are studied and evaluated using measuremed data. The figure-of-merits are calculated from complex-envelope data of a sampled power amplifier intended for 3G. Both time-and frequency domain methods are included in the study. It is found that a model evaluation criterion should have ability to capture both the linear and nonlinear distortion as well as the memory effects in the power amplifier. The normalized mean square error (NMSE) and the weighted error-to-signal power ratio (WE-SPR) are found to be the strongest candidates for capturing the in-band and the out-of-band errors, respectively. Both are also independent of power amplifier technology and stimuli input.
In this paper, a digital predistortion (DPD) technique for wideband multi-antenna transmitters is proposed. The proposed DPD compensates for the combined effects of power amplifier (PA) nonlinearity, antenna crosstalk and impedance mismatch. The proposed technique consists of a linear crosstalk and mismatch model block shared by all transmit paths, and a dual-input DPD block in every transmit path. By avoiding the use of multi-input DPD blocks in every transmit path, the complexity of the proposed technique is kept low and scales more favorably with the number of antennas than competing techniques. It is shown that all blocks can be identified from measurements of the PA output signals using least-squares estimation. Measurement results of a four-path transmitter are presented and used to evaluate the proposed DPD technique against existing techniques. The results show that the performance of the proposed DPD technique is similar to those of existing techniques, while the complexity is lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.