Recent development in the predictive maintenance field has focused on incorporating artificial intelligence techniques in the monitoring and prognostics of machine health. The current predictive maintenance applications in manufacturing are now more dependent on data-driven Machine Learning algorithms requiring an intelligent and effective analysis of a large amount of historical and real-time data coming from multiple streams (sensors and computer systems) across multiple machines. Therefore, this article addresses issues of data pre-processing that have a significant impact on generalization performance of a Machine Learning algorithm. We present an intelligent approach using unsupervised Machine Learning techniques for data pre-processing and analysis in predictive maintenance to achieve qualified and structured data. We also demonstrate the applicability of the formulated approach by using an industrial case study in manufacturing. Data sets from the manufacturing industry are analyzed to identify data quality problems and detect interesting subsets for hidden information. With the approach formulated, it is possible to get the useful and diagnostic information in a systematic way about component/machine behavior as the basis for decision support and prognostic model development in predictive maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.