A method for detection and genotyping of genital Chlamydia trachomatis infections based on omp1 gene amplification and sequencing was developed. DNA was extracted from urogenital or urine samples using a Chelex-based method, and an approximately 1,100-bp-long fragment from the omp1 gene was directly amplified and sequenced. Genotyping was performed by BLAST similarity search, and phylogenetic tree analysis was used to illustrate the evolutionary relationships between clinical isolates and reference strains. The method was used to determine the genotypes of C. trachomatis in 237 positive urogenital and/or urine specimens collected at a Swedish sexually transmitted disease clinic during 1 year. The most common genotypes corresponded to serotypes E (47%) and F (17%). The omp1 gene was highly conserved for genotype E (106 of 112 samples without any mutation) and F (41 of 42 samples without any mutation) strains but appear slightly less conserved for genotypes G (n ؍ 6) and H (n ؍ 6), where the sequences displayed one to four nucleotide substitutions relative to the reference sequence. Genotyping of samples collected at the follow-up visit indicated that two patients had become reinfected, while three other patients suffered treatment failure or reinfection. One woman appeared to have a mixed infection with two different C. trachomatis strains. This omp1 genotyping method had a high reproducibility and could be used for epidemiological characterization of sexually transmitted Chlamydia infections.
Chlamydia trachomatis is a major cause of bacterial sexually transmitted infections worldwide. In 2006, a new variant of C. trachomatis (nvCT), carrying a 377 bp deletion within the plasmid, was reported in Sweden. This deletion included the targets used by the commercial diagnostic systems from Roche and Abbott. The nvCT is clonal (serovar/genovar E) and it spread rapidly in Sweden, undiagnosed by these systems. The degree of spread may also indicate an increased biological fitness of nvCT. The aims of this study were to describe the genome of nvCT, to compare the nvCT genome to all available C. trachomatis genome sequences and to investigate the biological properties of nvCT. An early nvCT isolate (Sweden2) was analysed by genome sequencing, growth kinetics, microscopy, cell tropism assay and antimicrobial susceptibility testing. It was compared with relevant C. trachomatis isolates, including a similar serovar E C. trachomatis wild-type strain that circulated in Sweden prior to the initially undetected expansion of nvCT. The nvCT genome does not contain any major genetic polymorphisms – the genes for central metabolism, development cycle and virulence are conserved – or phenotypic characteristics that indicate any altered biological fitness. This is supported by the observations that the nvCT and wild-type C. trachomatis infections are very similar in terms of epidemiological distribution, and that differences in clinical signs are only described, in one study, in women. In conclusion, the nvCT does not appear to have any altered biological fitness. Therefore, the rapid transmission of nvCT in Sweden was due to the strong diagnostic selective advantage and its introduction into a high-frequency transmitting population.
The phenotypic and genotypic characteristics of Neisseria gonorrhoeae strains fluctuate over time both locally and globally, and highly discriminative and precise characterization of the strains is essential. Conventional characterization of N. gonorrhoeae strains for epidemiological purposes is mostly based on phenotypic methods, which have some inherent limitations. In the present study sequence analysis of porB1b gene sequences was used for examination of the genetic relationships among N. gonorrhoeae strains. Substantial genetic heterogeneity was identified in the porB genes of serovar IB-2 isolates (8.1% of the nucleotide sites were polymorphic) and serovar IB-3 isolates (5.2% of the nucleotide sites were polymorphic) as well as between isolates of different serovars. The highest degree of diversity was identified in the gene segments encoding the surface-exposed loops of the mature PorB protein. Phylogenetic analysis of the porB1b gene sequences confirmed previous findings that have indicated the circulation of one N. gonorrhoeae strain each of serovar IB-2 and serovar IB-3 in the Swedish community. These strains caused the majority of the cases in two domestic core groups comprising homosexual men and young heterosexuals, respectively, and were also detected in other patients. The phylogenetic analyses of porB gene sequences in the present study showed congruence, but not complete identity, with previous results obtained by pulsed-field gel electrophoresis of the same isolates. In conclusion, porB gene sequencing can be used as a molecular epidemiological tool for examination of genetic relationships among emerging and circulating N. gonorrhoeae strains, as well as for confirmation or discrimination of clusters of gonorrhea cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.