Graphical Abstract Highlights d Imidazole propionate levels are increased in subjects with type 2 diabetes (T2D) d Imidazole propionate is produced from histidine by T2Dassociated bacteria d Imidazole propionate impairs glucose tolerance and insulin signaling d Imidazole propionate inhibits IRS via activation of p38g/p62/ mTORC1In Brief Imidazole propionate, a metabolite produced by the gut microbiota, is elevated in type 2 diabetes and can directly impair glucose tolerance and insulin signaling. SUMMARYInteractions between the gut microbiota, diet, and the host potentially contribute to the development of metabolic diseases. Here, we identify imidazole propionate as a microbially produced histidinederived metabolite that is present at higher concentrations in subjects with versus without type 2 diabetes. We show that imidazole propionate is produced from histidine in a gut simulator at higher concentrations when using fecal microbiota from subjects with versus without type 2 diabetes and that it impairs glucose tolerance when administered to mice. We further show that imidazole propionate impairs insulin signaling at the level of insulin receptor substrate through the activation of p38g MAPK, which promotes p62 phosphorylation and, subsequently, activation of mechanistic target of rapamycin complex 1 (mTORC1). We also demonstrate increased activation of p62 and mTORC1 in liver from subjects with type 2 diabetes. Our findings indicate that the microbial metabolite imidazole propionate may contribute to the pathogenesis of type 2 diabetes. 948 Cell 175, 947-961, November 1, 2018 (legend continued on next page) 950 Cell 175, 947-961,
Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism.
ObjectiveDietary fibres are essential for maintaining microbial diversity and the gut microbiota can modulate host physiology by metabolising the fibres. Here, we investigated whether the soluble dietary fibre oligofructose improves host metabolism by modulating bacterial transformation of secondary bile acids in mice fed western-style diet.DesignTo assess the impact of dietary fibre supplementation on bile acid transformation by gut bacteria, we fed conventional wild-type and TGR5 knockout mice western-style diet enriched or not with cellulose or oligofructose. In addition, we used germ-free mice and in vitro cultures to evaluate the activity of bacteria to transform bile acids in the caecal content of mice fed with western-style diet enriched with oligofructose. Finally, we treated wild-type and TGR5 knockout mice orally with hyodeoxycholic acid to assess its antidiabetic effects.ResultsWe show that oligofructose sustains the production of 6α-hydroxylated bile acids from primary bile acids by gut bacteria when fed western-style diet. Mechanistically, we demonstrated that the effects of oligofructose on 6α-hydroxylated bile acids were microbiota dependent and specifically required functional TGR5 signalling to reduce body weight gain and improve glucose metabolism. Furthermore, we show that the 6α-hydroxylated bile acid hyodeoxycholic acid stimulates TGR5 signalling, in vitro and in vivo, and increases GLP-1R activity to improve host glucose metabolism.ConclusionModulation of the gut microbiota with oligofructose enriches bacteria involved in 6α-hydroxylated bile acid production and leads to TGR5-GLP1R axis activation to improve body weight and metabolism under western-style diet feeding in mice.
Background: Apolipoprotein CIII is a regulator of triglyceride (TG) metabolism, and due to its association with risk of cardiovascular disease, is an emergent target for pharmacological intervention.The impact of substantially lowering apoC-III on lipoprotein metabolism is not clear. Methods:We investigated the kinetics of apolipoproteins B48 and B100 in chylomicrons, VLDL1, VLDL2, IDL and LDL in subjects heterozygous for a loss-of-function (LOF) mutation in the APOC3 gene. Studies were conducted in the post-prandial state to provide a more comprehensive view of the influence of this protein on TG transport.Results: Compared to non-LOF subjects, a genetically-determined decrease in apoC-III resulted in marked acceleration of lipolysis of triglyceride-rich lipoproteins (TRL), increased removal of VLDL remnants from the bloodstream, and a substantial decrease in circulating levels of VLDL1, VLDL2 and IDL particles. Production rates for apolipoprotein B48-containing chylomicrons and apoB100containing VLDL1 and VLDL2 were not different between LOF carriers and non-carriers. Likewise, the rate of production of LDL was not affected by the lower apoC-III level, nor was the concentration of LDL-apoB100 or its clearance rate. Conclusion:These findings indicate that apoC-III lowering will have a marked effect on TRL and remnant metabolism, with possibly significant consequences for cardiovascular disease prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.