The Burgers' equation with uncertain initial and boundary conditions is investigated using a Polynomial Chaos (PC) expansion approach where the solution is represented as a truncated series of stochastic, orthogonal polynomials.The analysis of well posedness for the system resulting after Galerkin projection is presented and follows the pattern of the corresponding deterministic Burgers equation. The numerical discretization is based on spatial derivative operators satisfying the summation by parts property and weak boundary conditions to ensure stability. Similarly to the deterministic case, the explicit time step for the hyperbolic stochastic problem is proportional to the inverse of the largest eigenvalue of the system matrix. The time step naturally decreases compared to the deterministic case since the spectral radius of the continuous problem grows with the number of polynomial chaos * Corresponding author. Tel: 16508628295.Email addresses: massperp@stanford.edu (Per Pettersson), jops@stanford.edu (Gianluca Iaccarino), jan.nordstrom@foi.se (Jan Nordström) Preprint submitted to Journal of Computational PhysicsNovember 8, 2012coefficients. An estimate of the eigenvalues is provided.A characteristic analysis of the truncated PC system is presented and gives a qualitative description of the development of the system over time for different initial and boundary conditions. It is shown that a precise statistical characterization of the input uncertainty is required and partial information, e.g. the expected values and the variance, are not sufficient to obtain a solution. An analytical solution is derived and the coefficients of the infinite PC expansion are shown to be smooth, while the corresponding coefficients of the truncated expansion are discontinuous.
The Euler equations subject to uncertainty in the initial and boundary conditions are investigated via the stochastic Galerkin approach. We present a new fully intrusive method based on a variable transformation of the continuous equations. Roe variables are employed to get quadratic dependence in the flux function and a well-defined Roe average matrix that can be determined without matrix inversion.In previous formulations based on generalized polynomial chaos expansion of the physical variables, the need to introduce stochastic expansions of inverse quantities, or square-roots of stochastic quantities of interest, adds to the number of possible different ways to approximate the original stochastic problem. We present a method where the square roots occur in the choice of variables and no auxiliary quantities are needed, resulting in an unambiguous problem formulation.The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, the Roe formulation is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. We use a multi-wavelet basis that can be chosen to include a large number of resolution levels to handle more extreme cases (e.g. strong discontinuities) in a robust way. For smooth cases, the order of the polynomial representation can be increased for increased accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.