The history of click-speaking Khoe-San, and African populations in general, remains poorly understood. We genotyped ~2.3 million single-nucleotide polymorphisms in 220 southern Africans and found that the Khoe-San diverged from other populations ≥100,000 years ago, but population structure within the Khoe-San dated back to about 35,000 years ago. Genetic variation in various sub-Saharan populations did not localize the origin of modern humans to a single geographic region within Africa; instead, it indicated a history of admixture and stratification. We found evidence of adaptation targeting muscle function and immune response; potential adaptive introgression of protection from ultraviolet light; and selection predating modern human diversification, involving skeletal and neurological development. These new findings illustrate the importance of African genomic diversity in understanding human evolutionary history.
Southern Africa is consistently placed as a potential region for the evolution of We present genome sequences, up to 13x coverage, from seven ancient individuals from KwaZulu-Natal, South Africa. The remains of three Stone Age hunter-gatherers (about 2000 years old) were genetically similar to current-day southern San groups, and those of four Iron Age farmers (300 to 500 years old) were genetically similar to present-day Bantu-language speakers. We estimate that all modern-day Khoe-San groups have been influenced by 9 to 30% genetic admixture from East Africans/Eurasians. Using traditional and new approaches, we estimate the first modern human population divergence time to between 350,000 and 260,000 years ago. This estimate increases the deepest divergence among modern humans, coinciding with anatomical developments of archaic humans into modern humans, as represented in the local fossil record.
We investigate conditions under which a model with stochastic demography or population structure converges to the coalescent with a linear change in timescale. We argue that this is a necessary condition for the existence of a meaningful effective population size. We find that such a linear timescale change is obtained when demographic fluctuations and coalescence events occur on different timescales. Simple models of population structure and randomly fluctuating population size are used to exemplify the ideas and provide an intuitive feel for the meaning of the conditions.
Teasing apart the effects of selection and demography on genetic polymorphism remains one of the major challenges in the analysis of population genomic data. The traditional approach has been to assume that demography would leave a genome-wide signature, whereas the effect of selection would be local. In the light of recent genomic surveys of sequence polymorphism, several authors have argued that this approach is questionable based on the evidence of the pervasive role of positive selection and that new approaches are needed. In the first part of this review, we give a few empirical and theoretical examples illustrating the difficulty in teasing apart the effects of selection and demography on genomic polymorphism patterns. In the second part, we review recent efforts to detect recent positive selection. Most available methods still rely on an a priori classification of sites in the genome but there are many promising new approaches. These new methods make use of the latest developments in statistics, explore aspects of the data that had been neglected hitherto or take advantage of the emerging population genomic data. A current and promising approach is based on first estimating demographic and genetic parameters, using, e.g., a likelihood or approximate Bayesian computation framework, focusing on extreme outlier regions, and then using an independent method to confirm these. Finally, especially for species where evidence of natural selection has been limited, more experimental and versatile approaches that contrast populations under varied environmental constraints might be more successful compared with species-wide genome scans in search of specific signatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.