Background: Animal and in vitro studies suggest that phenolic compounds in virgin olive oil are effective antioxidants. In animal and in vitro studies, hydroxytyrosol and its metabolites have been shown to be strong antioxidants. One of the prerequisites to assess their in vivo physiologic significance is to determine their presence in human plasma. Methods: We developed an analytical method for both hydroxytyrosol and 3-O-methyl-hydroxytyrosol in plasma. The administered dose of phenolic compounds was estimated from methanolic extracts of virgin olive oil after subjecting them to different hydrolytic treatments. Plasma and urine samples were collected from 0 to 12 h before and after 25 mL of virgin olive oil intake, a dose close to that used as daily intake in Mediterranean countries. Samples were analyzed by capillary gas chromatography-mass spectrometry before and after being subjected to acidic and enzymatic hydrolytic treatments. Results: Calibration curves were linear (r >0.99). Analytical recoveries were 42-60%. Limits of quantification were <1.5 mg/L. Plasma hydroxytyrosol and 3-O-methyl-hydroxytyrosol increased as a response to virgin olive oil administration, reaching maximum concentrations at 32 and 53 min, respectively (P <0.001 for quadratic trend). The estimated hydroxytyrosol elimination halflife was 2.43 h. Free forms of these phenolic compounds were not detected in plasma samples. Conclusions: The proposed analytical method permits quantification of hydroxytyrosol and 3-O-methyl-hydroxytyrosol in plasma after real-life doses of virgin olive oil. From our results, ϳ98% of hydroxytyrosol appears to be present in plasma and urine in conjugated
3,4-Methylenedioxymethamphetamine (MDMA) is frequently consumed in association with alcohol. The effect of this combination in humans has not been previously investigated. Nine male healthy volunteers received single oral doses of 100 mg of MDMA plus 0.8 g/kg ethanol, 100 mg of MDMA, 0.8 g/kg of ethanol, and placebo in a double blind, double dummy, randomized crossover trial. Measurements included psychomotor performance, subjective effects, and pharmacokinetics. Plasma concentrations of MDMA showed a 13% increase after the use of alcohol, whereas plasma concentrations of alcohol showed a 9 to 15% decrease after MDMA administration. The MDMA-alcohol combination induced longer lasting euphoria and well being than MDMA or alcohol alone. MDMA reversed the subjective sedation induced by alcohol but did not reduce drunkenness feelings. MDMA did not reverse the actions of alcohol on psychomotor abilities. Combined use of MDMA and alcohol causes dissociation between subjective and objective sedation. Subjects may feel euphoric and less sedated and might have the feeling of doing better, but actual performance ability continues to be impaired by the effect of alcohol. Confirmation of these findings in further studies will be highly relevant in terms of road safety.
Aims 3,4-Methylenedioxymethamphetamine (MDMA, commonly called ecstasy) is a synthetic compound increasingly popular as a recreational drug. Little is known about its pharmacology, including its metabolism and pharmacokinetics, in humans in controlled settings. A clinical trial was designed for the evaluation of MDMA pharmacological effects and pharmacokinetics in healthy volunteers. Methods A total of 14 subjects were included. In the pilot phase six received MDMA at 50 (n=2), 100 (n=2), and 150 mg (n=2). In the second phase eight received MDMA at both 75 and 125 mg (n=8). Subjects were phenotyped for CYP2D6 activity and were classified as extensive metabolizers for substrates, such as MDMA, whose hepatic metabolism is regulated by this enzyme. Plasma and urine samples were collected throughout the study for the evaluation of MDMA pharmacokinetics. Body fluids were analysed for the determination of MDMA and its main metabolites 3,4-methylenedioxyamphetamine (MDA), 4-hydroxy-3-methoxy-methamphetamine (HMMA) and 4-hydroxy-3-methoxy-amphetamine (HMA). Results As the dose of MDMA administered was increased, volunteers showed rises in MDMA concentrations that did not follow the same proportionality which could be indicative of nonlinearity. In the full range of doses tested the constant recovery of HMMA in the urine combined with the increasing MDMA recovery seems to point towards a saturation or an inhibition of MDMA metabolism (the demethylenation step). These observations are further supported by the fact that urinary clearance was rather constant while nonrenal clearance was dose dependent. Conclusions It has previously been postulated that individuals genetically deficient for the hepatic enzyme CYP2D6 (about 10% of the Caucasian people) were at risk of developing acute toxicity at moderate doses of MDMA because the drug would accumulate in the body instead of being metabolized and inactivated. The lack of linearity of MDMA pharmacokinetics (in a window of doses compatible with its recreational use) is a more general phenomenon as it concerns the whole population independent of their CYP2D6 genotype. It implies that relatively small increases in the dose of MDMA ingested are translated to disproportionate rises in MDMA plasma concentrations and hence subjects are more prone to develop acute toxicity.
There is evidence that some heavy users of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) show signs of neurotoxicity (a cognitive dysfunction, a larger incidence of psychopathology). It has been postulated that the catechol intermediates of methylenedioxyamphetamines such as 3,4-dihydroxymethamphetamine (HHMA), a metabolite of MDMA, may play a role in their neurotoxicity by formation of thioether adducts. This study describes the first validated method for HHMA determination in plasma and urine by strong cation-exchange solid-phase extraction high-performance liquid chromatography/electrochemical detection (HPLC/ED) analysis. The method has been applied for the determination of HHMA in plasma and urine samples from a clinical study in healthy volunteers of MDMA and provides preliminary kinetic data on this metabolite. HHMA appeared to be a major MDMA metabolite with plasma concentrations as high as the parent compound. Thus, HHMA C(max) (154.5 microg/L) and AUC(0-24h)(1990.9 microg/L h) were similar to those obtained in previously published reports for MDMA (181.6 microg/L and 1465.9 microg/L h, respectively). The 24-h urinary recovery of HHMA accounted for 17.7% of the MDMA dose administered and increases the total 24 h recovery of MDMA and metabolites to 58% of the 100 mg dose administered. The determination of HHMA in plasma and urine samples is of interest in order to establish its relevance in MDMA metabolism and its possible contribution to MDMA neurotoxicity in humans. Its validation showed appropriate accuracy and precision for its use in pharmacokinetic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.