Understanding population connectivity within a species as well as potential interactions with its close relatives is crucial to define management units and to derive efficient management actions. However, although genetics can reveal mismatches between biological and management units and other relevant but hidden information such as species misidentification or hybridization, the uptake of genetic methods by the fisheries management process is far from having been consolidated. Here, we have assessed the power of genetics to better understand the population connectivity of white (Lophius piscatorius) and its interaction with its sister species, the black anglerfish (Lophius budegassa). Our analyses, based on thousands of genome‐wide single nucleotide polymorphisms, show three findings that are crucial for white anglerfish management. We found (i) that white anglerfish is likely composed of a single panmictic population throughout the Northeast Atlantic, challenging the three‐stock based management, (ii) that a fraction of specimens classified as white anglerfish using morphological characteristics are genetically identified as black anglerfish (L. budegassa), and iii) that the two Lophius species naturally hybridize leading to a population of hybrids of up to 20% in certain areas. Our results set the basics for a genetics‐informed white anglerfish assessment framework that accounts for stock connectivity, revises and establishes new diagnostic characters for Lophius species identification, and evaluates the effect of hybrids in the current and future assessments of the white anglerfish. Furthermore, our study contributes to provide additional evidence of the potentially negative consequences of ignoring genetic data for assessing fisheries resources.
Genetics analyses can reveal mismatches between biological and management units and thus prevent derived ineffective management actions that could lead to serious consequences for fisheries management. Additionally, genetics could reveal other relevant but hidden information such as species misidentification or hybridization. Here, we have assessed the power of genetics to better understand the population connectivity of white angelfish (Lophius piscatorius) and its interaction with its sister species, the black anglerfish (L. budegassa). Our analyses, based on thousands of genome-wide single nucleotide polymorphisms, show three thus far unknown findings that are crucial for white anglerfish management. We found i) that white anglerfish is composed by a single panmictic population throughout the Northeast Atlantic, challenging the three-stock based management, ii) that a fraction of specimens classified as white anglerfish using morphological characteristics are genetically identified as black anglerfish (L. budegassa) and iii) that the two Lophius species naturally hybridize leading to a population of hybrids of up to 20% in certain areas. Our results set the basics for a genetics-informed white anglerfish assessment framework that accounts for stock connectivity, revises and establishes new diagnostic characters for Lophius species identification and evaluates the effect of hybrids in the current and future assessments of the white anglerfish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.