Providing efficient human mobility services and infrastructure is one of the major concerns of most mid-sized to large cities around the world. A proper understanding of the dynamics of commuting flows is, therefore, a requisite to better plan urban areas. In this context, an important task is to study hypothetical scenarios in which possible future changes are evaluated. For instance, how the increase in residential units or transportation modes in a neighborhood will change the commuting flows to or from that region? In this paper, we propose to leverage GMEL, a recently introduced graph neural network model, to evaluate changes in commuting flows taking into account different land use and infrastructure scenarios. We validate the usefulness of our methodology through real-world case studies set in two large cities in Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.