BackgroundThe herb formulation Deva-5 is used in traditional medicine to treat acute infectious diseases. Deva-5 is composed of five herbs: Gentiana decumbens L., Momordica cochinchinensis L., Hypecoum erectum L., Polygonum bistorta L., and Terminalia chebula Retz. Deva-5 and its five components were investigated for in vitro antiviral activity against avian influenza A virus subtype H3N8.MethodsThe water extracts of the herbal parts of G. decumbens, H. erectum and P. bistorta, the seeds of T. chebula and M. cochinchinensis and Deva-5 were prepared by boiling and clarified by low-speed centrifugation and filtration. To assess the antiviral properties, avian influenza virus isolate A/Teal/Tunka/7/2010(H3N8) was incubated at 37°C for 30 min in the presence and absence of the extracts of five plants and DEVA-5 in various concentrations. Subsequently, the concentration of infectious virus in each sample was determined by plaque assays. Neutralisation indexes and 90% plaque reduction concentrations were estimated for each extract, and the significance of the data was evaluated using statistical methods.ResultsThe extracts of G. decumbens, H. erectum, P. bistorta and Deva-5 demonstrated no significant toxicity at concentrations up to 2%, whereas extracts of T. chebula and M. cochinchinensis were well-tolerated by Madin-Darby canine kidney cells at concentrations up to 1%. The extracts of H. erectum, M. cochinchinensis and T. chebula reduced the titre of A/Teal/Tunka/7/2010 (H3N8) by approximately five-fold (p ≤ 0.05). The other three extracts did not significantly reduce the infectivity of the virus. The plaque reduction neutralisation tests revealed that none of the extracts tested were able to inhibit formation of plaques by 90%. However, three extracts, H. erectum, T. chebula and M. cochinchinensis, were able to inhibit formation of plaques by more than 50% at low dilutions from 1:3 to 1:14. The T. chebula extract had a concentration-dependent inhibitory effect.ConclusionsFor the first time, the consistent direct antiviral action of the extracts of H. erectum, T. chebula and M. cochinchinensis was detected. These extracts significantly reduced the infectivity of influenza A virus H3N8 in vitro when used at high concentrations (0.5–1%). However, Deva-5 itself and the remainder of its components did not exhibit significant antiviral action. The results suggest that H. erectum, T. chebula and M. cochinchinensis plants contain substances with direct antiviral activity and could be promising sources of new antiviral drugs.
Objectives: To examine the therapeutic effects of buteelch-5, a traditional formula on DSSinduced colitis in C57/BL6 mice and its possible mechanisms. Methods: Colitis in mice was induced by oral administration of 5% dextran sulfate sodium (DSS) for seven days. On the eighth day after administration of DSS, buteelch-5 (500 mg/kg, twice a day) was given orally to mice for ve consecutive days. Cipro oxacin (50 mg/kg, once a day for 5 days) was given to mice as a comparison. Two hours after the last administration of buteelch-5 and cipro oxacin, mice were euthanized, and colon tissues were removed. Protein and mRNA levels of occludin, claudin-1 and zonula occludens (ZO)-1 in colon tissues were determined by western blot and real time-qPCR respectively. Histopathological analysis of colon tissues was performed. Results: Histological analysis revealed successful establishments of colitis models. Treatment with buteelch-5 markedly inhibited DSS-induced colon injury. Furthermore, buteelch-5 increased (2.14-2.67 fold) the occludin, claudin and ZO-1 protein and mRNA levels in colon tissues of mice administered with DSS. Signi cant increase was observed in occludin mRNA levels after buteelch-5 treatment (p<.05). Conclusion: Buteelch-5 improves microscopic in ammation and increases tight junction protein expressions such as occludin, claudin, and ZO-1 in mice with DSS-induced colitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.