This work presents the identification and validation of a non-linear model of a permanent magnet DC motor, which includes the phenomenon of dead zone and friction, as well as the design of a linear position control for this type of device. Its main objective is to reduce the effects that these non-linearities produce in the position control of electric motors. The proposed controller has an integral double effect and a lead compensator. It is implemented in real time, through a digital control scheme, in the Quanser DC Motor Control Trainer system, which includes a Maxon brand permanent magnet DC motor. The proposed controller is compared to two of the most widely used strategies to reduce the dead zone problem: control with the use of the “inverse” dead zone and switched control. For the first one, a PI controller plus the inverse dead zone is used, while for the second one, a switched PI-PD controller is designed. The responses of both controllers are analyzed with the numerical tool Matlab®/ Simulink™.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.