Sustainable reuse of pre-treated drill cuttings (a hazardous waste) as part substitute for fine aggregate in concrete for construction purposes is becoming increasingly attractive; however, issues remain. With recent studies focusing on the use of near-infrared spectroscopic technique for non-invasive determination of chloride concentration in concrete structures, this review examines the applicability of this new technique in the rapid determination of other equally important physicochemical characteristics of concrete produced with this hazardous waste. The nature, source, composition, ecological effects of, and management options for drill cuttings are reviewed. Furthermore, the principles of near-infrared diffuse reflectance spectroscopy are highlighted and lessons from its practical applications in soil science and petrochemical, environmental, and civil engineering are discussed. A framework for a rapid near-infrared analysis of concrete produced with pre-treated drill cuttings for enhanced sustainability as a construction material is also proposed.
The reuse of solidified/stabilized low-temperature thermally desorbed (pre-treated) oil-based drill cuttings for construction purposes is becoming increasingly attractive in recent times; though, without screening a priori the levels of target residual organic contaminants against environmental guidelines to ensure compliance. In this study, pre-treated oil-based drill cuttings were collected from a waste treatment facility in the Niger Delta Province (5.317oN; 6.467oE), Nigeria and subjected to cement-based solidification/stabilization (S/S) followed by chemical leaching and screening of the data against local environmental guidelines. S/S was done with drill cuttings contents of 0 (control), 2, 4, 6, 8, and 10 % as part replacement for fine aggregate at 0.6:1, 0.65:1, 0.7:1, 0.75:1, and 0.8:1 water-to-cement ratios using 1:2:4 mix design for a grade-20 concrete. Afterwards, the surface microstructure, elemental composition, and unconfined compressive strength (UCS) of the solidified/stabilized matrix were determined. Amounts of heavy metals and total petroleum hydrocarbons (TPH) leached were also assessed. Results showed that the 2 % drill cuttings addition yielded the highest UCS (22.22–26.22 N/mm2) at water-to-cement ratio of 0.6:1, which were well above the recommended minimum UCS of 20 N/mm2 for a grade-20 concrete. The average amount of residual TPH in the solidified/stabilized matrix (62.41 mg/kg) was slightly higher than the local regulatory target value of 50 mg/kg; suggesting that the cement-based S/S failed to immobilize completely all the hydrocarbons in the pre-treated oil-based drill cuttings. This shows that the solidified/stabilized matrix is not in compliance with environmental guidelines on TPH for sustainable reuse as construction materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.