Microstructure and architecture of the scaffolds along with the surface chemistry exert profound effect on biological activity (cell distribution, proliferation, and differentiation). For the biological activity, scaffolds in tissue engineering have been widely designed. The objective of this study was to develop hydrophilic nanofibrous structure of polylactides (PLLA) polymer in the form of nonwoven mat by electrospinning technique, and further evaluate the fibroblast NIH3T3 cell proliferation, morphology, and cell-matrix interaction. Hydrophilicity of the PLLA fibers was improved by adding small fraction of low molecular weight polyethylene glycol (PEG) into the electrospinning solution. Four different ratio types (100/0, 80/20, 70/30, and 50/50) of PLLA/PEG electrospun matrices were fabricated, and the pore characteristics, tensile properties, contact angle, and hydrolytic degradation were observed. Furthermore, scanning electron microscope (SEM) and fluorescence actin staining images were used for micro-observation of cell-matrix interaction and cell morphology. It was found that the electrospun mat of PLLA/PEG (80/20), composed of fibers with diameters in the range 540-850 nm, majority of pore diameter less than 100 microm, tensile strength 8 MPa, elongation 150%, porosity more than 90%, and improved hydrophilicity with slow hydrolytic degradation, is favorable for biological activity of NIH3T3 fibroblast cell. Based on these results, the correct composition of PLLA and PEG in the porous electrospun matrix (i.e., PLLA/PEG (80/20)) will be a better candidate rather than other compositions of PLLA/PEG as well as hydrophobic PLLA for application in tissue engineering.
The morphology and optical properties of zinc oxide fibres with diameters in the nanometre
to micrometre range are reported. The PVA/zinc acetate organic/inorganic hybrid
nanofibres were successfully prepared by electrospinning using polyvinyl alcohol (PVA) and
zinc acetate. Pure zinc oxide fibres were obtained by high-temperature calcination of the
hybrid fibres in air. The nanofibres were characterized by scanning electron microscopy
(SEM), atomic force microscopy (AFM), x-ray diffractometry (XRD) and Raman
spectroscopy. The photoluminescence spectra under excitation at 325 nm showed an
ultraviolet emission at 3.13 eV and a green emission at 2.21 eV. These nanofibres
could be used as light emitting devices in nanoscale optoelectronic applications.
Nickel(II) complexes containing thiosemicarbazone ligands [Ni(L) 2 ] (1-3) (L = 9,10-phenanthrenequinonethiosemicarbazone (HL 1 ), 9,10-phenanthrenequinone-N-methylthio semicarbazone (HL 2 ) and 9, 10-phenanthrenequinone-N-phenylthiosemicarbazone (HL 3 )) have been synthesized and characterized by elemental analysis and spectroscopic (IR, UV-Vis, 1 H, 13 C-NMR and ESI mass) methods. The molecular structures of complexes 1 and 2 were identified by means of single-crystal X-ray diffraction analysis. The analysis revealed that the complexes possess a distorted octahedral geometry with the ligand coordinating in a uni-negative tridentate ONS fashion. The catalytic activity of complexes towards some C-C coupling reactions (viz., KumadaCorriu, Suzuki-Miyaura and Sonogashira) has been examined. The complexes behave as efficient catalysts in the Kumada-Corriu and Sonogashira coupling reactions rather than Suzuki-Miyaura coupling.
Ruthenium(II) carbonyl complexes with phosphine-functionalized PNS type thiosemicarbazone ligands [RuCl(CO)(EPh3)(L)] (1-6) (E = P or As, L = 2-(2-(diphenylphosphino)benzylidene) thiosemicarbazone (PNS-H), 2-(2-(diphenylphosphino)benzylidene)-N-methylthiosemicarbazone (PNS-Me), 2-(2-(diphenylphosphino)benzylidene)-N-phenylthiosemicarbazone (PNS-Ph)) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-Vis, (1)H, (13)C, (31)P-NMR) as well as ESI mass spectrometry. The molecular structures of complexes 1, 2 and 6 were identified by means of single-crystal X-ray diffraction analysis. The analysis revealed that all the complexes possess a distorted octahedral geometry with the ligand coordinating in a uni-negative tridentate PNS fashion. All the ruthenium complexes (1-6) were tested as catalyst for N-alkylation of heteroaromatic amines with alcohols. Notably, complex 2 was found to be a very efficient and versatile catalyst towards N-alkylation of a wide range of heterocyclic amines with alcohols. Complex 2 can also catalyze the direct amination of 2-nitropyridine with benzyl alcohol to the corresponding secondary amine. Furthermore, a preliminary examination of performance for N,N-dialkylation of diamine showed promising results, giving good conversion and high selectivity. In addition, N-alkylation of ortho-substituted anilines (-NH2, -OH and -SH) led to the one-pot synthesis of 2-aryl substituted benzimidazoles, benzoxazoles and benzothiazoles, also revealing the catalytic activity of complex 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.