Severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV2) is the cause of a new disease (COVID-19) which has evolved into a pandemic during the first half of 2020. Older age, male sex and certain underlying diseases, including cancer, appear to significantly increase the risk for severe COVID-19. SARS-CoV-2 infection of host cells is facilitated by the angiotensin-converting enzyme 2 (ACE-2), and by transmembrane protease serine 2 (TMPRSS2) and other host cell proteases such as cathepsin L (CTSL). With the exception of ACE-2, a systematic analysis of these two other SARS-CoV2 infection mediators in malignancies is lacking. Here, we analysed genetic alteration, RNA expression, and DNA methylation of TMPRSS2 and CTSL across a wide spectrum of tumors and controls. TMPRSS2 was overexpressed in cervical squamous cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), uterine corpus endometrial carcinoma and uterine carcinosarcoma, with PRAD and READ exhibiting the highest expression of all cancers. CTSL was upregulated in lymphoid neoplasm diffuse large B-cell lymphoma, oesophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, lower grade glioma, pancreatic adenocarcinoma, skin cutaneous melanoma, stomach adenocarcinoma, and thymoma. Hypo-methylation of both genes was evident in most cases where they have been highly upregulated. We have expanded on our observations by including data relating to mutations and copy number alterations at pan-cancer level. The novel hypotheses that are stemming out of these data need to be further investigated and validated in large clinical studies.
The pathophysiology of coronavirus disease 2019 (COVID-19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide-repertoire of possible cell entry mediators that appear to co-localise in a cell- and tissue-specific manner. The present study provides an over-view of the 'canonical' SARS-CoV-2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin-1, expanding on the involvement of novel candidates, including glucose-regulated protein 78, basigin, kidney injury molecule-1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor-α convertase) and Toll-like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID-19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS-CoV-2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID-19 warrants further investigation.
Severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2), the causative viral agent for the ongoing COVID-19 pandemic, enters its host cells primarily via the binding of the SARS-CoV-2 spike (S) proteins to the angiotensin-converting enzyme 2 (ACE2). A number of other cell entry mediators have also been identified, including neuropilin-1 (NRP1) and transmembrane protease serine 2 (TMPRSS2). More recently, it has been demonstrated that transmembrane protease serine 4 (TMPRSS4) along with TMPRSS2 activate the SARS-CoV-2 S proteins, and enhance the viral infection of human small intestinal enterocytes. To date, a systematic analysis of TMPRSS4 in health and disease is lacking. In the present study, using in silico tools, the gene expression and genetic alteration of TMPRSS4 were analysed across numerous tumours and compared to controls. The observations were also expanded to the level of the central nervous system (CNS). The findings revealed that TMPRSS4 was overexpressed in 11 types of cancer, including lung adenocarcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, thyroid carcinoma, ovarian cancer, cancer of the rectum, pancreatic cancer, colon and stomach adenocarcinoma, uterine carcinosarcoma and uterine corpus endometrial carcinoma, whilst it was significantly downregulated in kidney carcinomas, acute myeloid leukaemia, skin cutaneous melanoma and testicular germ cell tumours. Finally, a high TMPRSS4 expression was documented in the olfactory tubercle, paraolfactory gyrus and frontal operculum, all brain regions which are associated with the sense of smell and taste. Collectively, these data suggest that TMPRSS4 may play a role in COVID-19 symptomatology as another SARS-CoV-2 host cell entry mediator responsible for the tropism of this coronavirus both in the periphery and the CNS.
Purpose To investigate the cytotoxic effect of bleomycin, mitomycin C ( MMC ) and Fluorouracil (5‐ FU ) in combination with electroporation ( EP ) on human conjunctival melanoma ( CM ) and normal conjunctival cell lines using 2D and 3D cell culture systems in vitro . Methods Two CM ( CRMM 1, CRMM 2) and one normal conjunctival epithelial cell line ( HC jE‐Gi) were treated with various EP conditions and increasing concentrations of 5‐ FU , MMC and bleomycin. Cell survival was assessed by MTT viability assay. All cell lines were seeded to create spheroids and were treated with bleomycin on day 3 and day 8 combined with EP . Spheroids were collected, fixed in buffered formalin and subsequently paraffin embedded for histological assessment of the effects of the treatment on cell viability. Results CM cell lines were resistant to electroporation alone and showed a reduction in cell number only when treated with 1000 Volts/cm and 8 pulses. HC jE‐Gi cells showed higher sensitivity to electric pulses over 750 Volts/cm. MMC and 5‐ FU demonstrated a higher cytotoxicity for the HC jE‐Gi cell line. The CM cell lines were resistant to MMC and 5‐ FU . Bleomycin (1 μ g/ml) alone had no significant effect on the HC jE‐Gi even when combined with EP conditions ≥750 Volts/cm. In contrast, it significantly (p ‐, paired t‐test) reduced cell viability in the CM cell lines. Spheroids treated with bleomycin and EP showed a reduction in tumour mass and proliferation rates after treatment. Conclusion Our in vitro study using 2D and 3D models indicates that the application of EP may effectively enhance chemotherapy with bleomycin in CM . This may offer new viable perspectives for CM treatment.
Background: Liquid biopsies offer a promising alternative to tissue samples, providing non-invasive diagnostic approaches or serial monitoring of disease evolution. However, certain challenges remain, and the full potential of liquid biopsies has yet to be reached. Here we report several methodological approaches to interrogate liquid biopsies using circulating tumour cell (CTC) enumeration and characterisation, transcriptomics, Raman spectroscopy, and copy number instability (CNI) scores using blood samples of lung cancer (LC) patients. Methods: We choose LC; since it still is the most common cause of cancer-related mortality worldwide, and therefore there is a need for development of new non-invasive diagnostic/prognostic technologies. Changes in gene expression were assessed using RNA-seq, and in CTCs using ImageStream, an imaging flow-cytometer. CNI scores, from paired tissue/ctDNA were also explored. Raman spectroscopy was used to provide chemical fingerprints of plasma samples. Results: CTCs were detected in all LC patients (n = 10). We observed a significant increase in CTC levels in LC patients (n = 10) compared to controls (n = 21). A similar CNI was noted in the tissue and plasma of 2 patients, where higher CNI scores corresponded with poorer outcome. Significant changes in Raman spectra (carotenoid concentrations) were noted in LC patients (n = 20) compared to controls (n = 10). RNA-seq revealed differential expression of 21 genes between LC cases and controls in both LC tissue and blood samples. Conclusions: Liquid biopsies can potentially provide a more comprehensive picture of the disease compared to a single tissue biopsy. CTC enumeration is feasible and sensitive for LC patients. Molecular profiling of CTCs is also possible from total blood. CNI scores and Raman spectra require further investigation. Further work is being undertaken to explore these methods of detection in a larger LC cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.