The innate immune system critically shapes diabetogenic adaptive immunity during type 1 diabetes (T1D) pathogenesis. While the role of tissue-infiltrating monocyte-derived macrophages in T1D is well established, the role of their tissue-resident counterparts remains undefined. We now demonstrate that islet resident macrophages (IRMs) from non-autoimmune mice have an immunoregulatory phenotype and powerfully induce FoxP3+ Tregs in vitro. The immunoregulatory phenotype and function of IRMs is compromised by TLR4 activation in vitro. Moreover, as T1D approaches in NOD mice, the immunoregulatory phenotype of IRMs is diminished as is their relative abundance compared to immunostimulatory DCs. Our findings suggest that maintenance of IRM abundance and their immunoregulatory phenotype may constitute a novel therapeutic strategy to prevent and/or cure T1D.
Hematopoietic stem/progenitor cells (HSPC) are characterized by their unique capacities of self-renewal and multi-differentiation potential. This second property makes them able to adapt their differentiation profile depending on the local environment they reach. Taking advantage of an animal model of peritonitis, induced by injection of the TLR-2 ligand, zymosan, we sought to study the relationship between bone marrow-derived hematopoietic stem/progenitor cells (BM-HSPCs) and innate lymphoid cells (ILCs) regarding their emergence and differentiation at the site of inflammation. Our results demonstrate that the strength of the inflammatory signals affects the capacity of BM-derived HSPCs to migrate and give rise in situ to ILCs. Both low- and high-dose of zymosan injections trigger the appearance of mature ILCs in the peritoneal cavity where the inflammation occurs. Herein, we show that only in low-dose injected mice, the recovered ILCs are dependent on an in situ differentiation of BM-derived HSPCs and/or ILC2 precursors (ILC2P) wherein high-dose, the stronger inflammatory environment seems to be able to induce the emergence of ILCs independently of BM-derived HSPCs. We suggest that a relationship between HSPCs and ILCs seems to be affected by the strength of the inflammatory stimuli opening new perspectives in the manipulation of these early hematopoietic cells.
Background Immune checkpoint inhibitors and mitogen-activated protein kinase inhibitors have become the standard of care in patients with advanced melanoma bearing V600 mutations. However, little is known about their nephrotoxicity. To date, only two cases of anti-glomerular basement membrane glomerulonephritis after exposure to checkpoint inhibitors have been documented. Herein, we report the first case of a patient with metastatic melanoma who developed linear Immunoglobulin G 3+, Immunoglobulin A 2+, kappa 2+, lambda 1+ anti-glomerular basement membrane glomerulonephritis with negative serology following treatment with checkpoint inhibitors and subsequently mitogen-activated protein kinase inhibitors. Case presentation A 58-year-old Caucasian male was referred to our outpatient nephrology clinic with acute kidney injury and proteinuria. He had received three cycles of ipilimumab and nivolumab for recurrent melanoma positive for the BRAF V600E mutation with metastasis to the lungs. Immunotherapy had been discontinued in the setting of severe adverse effects including dermatitis, colitis, and hepatitis. Because of persistent bilateral lung metastases and left pleural metastases, the patient had been initiated on dabrafenib and trametinib until his presentation to our clinic 6 months later. On presentation, his blood pressure was 172/89 mm/Hg and had 2+ edema bilaterally. His creatinine level was 2.4 mg/dL from a previous normal baseline with a urinary protein-to-creatinine ratio of 2 g/g. His urinalysis showed dysmorphic erythrocytes and red blood cell casts. Serologic testing was negative for antineutrophilic cytoplasmic antibodies, proteinase 3 antigen, myeloperoxidase, and anti-glomerular basement membrane antibody. Complement levels were normal. A renal biopsy showed focal crescentic (2 of 15 glomeruli with cellular crescents), proliferative, and sclerosing glomerulonephritis with diffuse linear staining of glomerular capillary loops dominant for IgG (3+), IgA (2+), kappa (2+), and lambda (1+) minimal changes. He was initiated on oral cyclophosphamide and pulse intravenous methylprednisolone followed by oral prednisone for 6 months, which stabilized his renal function until reinitiation of immunotherapy. Conclusions Acute kidney injury is an increasingly reported adverse effect of both drug classes, mostly affecting the tubulointerstitial compartment and infrequently the glomerulus. Although the biologic effect of these drugs on immune cells is not entirely understood, it is possible that BRAF-induced podocyte injury in combination with direct T-cell-mediated glomerular injury facilitated by checkpoint inhibitors led to the unmasking of cryptic antigens, loss of self-tolerance, and autoimmunity. More importantly, we show that treatment with corticosteroids and cyclophosphamide was able to improve and stabilize our patient’s renal function until the reinitiation of immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.