This work is a product of the staff of The World Bank with external contributions. The fi ndings, interpretations, and conclusions expressed in this work do not necessarily refl ect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifi cally reserved.
SummaryPopulation and per capita gross domestic product (GDP) projections are used to estimate total global municipal solid waste (MSW) generation over the twenty-first century. Some projections for global population suggest that it will peak this century. Waste generation rates per capita generally increase with affluence, although in the most affluent countries there is also a trend toward dematerialization. The confluence of these factors means that at some point in the future total global waste generation could possibly peak. To determine when peak waste might occur, we used the shared-socioeconomic pathway scenarios (used in Intergovernmental Panel on Climate Change [IPCC] studies) combined with estimates of municipal solid waste (MSW) generation rates, extrapolated from our work for the World Bank. Despite the expectation that total MSW generation in Organisation for Economic Co-operation and Development (OECD) and high-income countries will peak mid-century, with current trajectories global peak waste is not expected before 2100. The peak could be moved forward to around 2075 and reduced in intensity by some 30% if a more aggressive sustainability growth scenario were followed, rather than the current businessas-usual scenario. Further, the magnitude of peak waste is sensitive to the intensity of waste generation; it could vary from 7.3 to 10.9 megatonnes per day under the sustainability scenario. The timing of peak waste will substantially depend on the development of cities in Sub-Saharan Africa, where population growth rates are more than double the rest of the world.
Development Series discusses the challenge of urbanization and what it will mean for developing countries in the decades ahead. The Series aims to explore and delve more substantively into the core issues framed by the World Bank's 2009 Urban Strategy Systems of Cities: Harnessing Urbanization for Growth and Poverty Alleviation. Across the five domains of the Urban Strategy, the Series provides a focal point for publications that seek to foster a better understanding of (i) the core elements of the city system, (ii) pro-poor policies, (iii) city economies, (iv) urban land and housing markets, (v) sustainable urban environment, and other urban issues germane to the urban development agenda for sustainable cities and communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.