Skeletal muscle has remarkable regeneration capabilities, mainly due to its resident muscle stem cells (MuSCs). In this review, we introduce recently developed technologies and the mechanistic insights they provide to the understanding of MuSC biology, including the re-definition of quiescence and Galert states. Additionally, we present recent studies that link MuSC function with cellular heterogeneity, highlighting the complex regulation of self-renewal in regeneration, muscle disorders and aging. Finally, we discuss MuSC metabolism and its role, as well as the multifaceted regulation of MuSCs by their niche. The presented conceptual advances in the MuSC field impact on our general understanding of stem cells and their therapeutic use in regenerative medicine.
Background The quantitative analysis of muscle histomorphometry has been growing in importance in both research and clinical settings. Accurate and stringent assessment of myofibers’ changes in size and number, and alterations in the proportion of oxidative (type I) and glycolytic (type II) fibers is essential for the appropriate study of aging and pathological muscle, as well as for diagnosis and follow-up of muscle diseases. Manual and semi-automated methods to assess muscle morphometry in sections are time-consuming, limited to a small field of analysis, and susceptible to bias, while most automated methods have been only tested in rodent muscle. Methods We developed a new macro script for Fiji-ImageJ to automatically assess human fiber morphometry in digital images of the entire muscle. We tested the functionality of our method in deltoid muscle biopsies from a heterogeneous population of subjects with histologically normal muscle (male, female, old, young, lean, obese) and patients with dermatomyositis, necrotizing autoimmune myopathy, and anti-synthetase syndrome myopathy. Results Our macro is fully automated, requires no user intervention, and demonstrated improved fiber segmentation by running a series of image pre-processing steps before the analysis. Likewise, our tool showed high accuracy, as compared with manual methods, for identifying the total number of fibers ( r = 0.97, p < 0.001), fiber I and fiber II proportion ( r = 0.92, p < 0.001), and minor diameter ( r = 0.86, p < 0.001) while conducting analysis in ~ 5 min/sample. The performance of the macro analysis was maintained in pectoral and deltoid samples from subjects of different age, gender, body weight, and muscle status. The output of the analyses includes excel files with the quantification of fibers’ morphometry and color-coded maps based on the fiber’s size, which proved to be an advantageous feature for the fast and easy visual identification of location-specific atrophy and a potential tool for medical diagnosis. Conclusion Our macro is reliable and suitable for the study of human skeletal muscle for research and for diagnosis in clinical settings providing reproducible and consistent analysis when the time is of the utmost importance. Electronic supplementary material The online version of this article (10.1186/s13395-019-0200-7) contains supplementary material, which is available to authorized users.
1,25-Dihydroxyvitamin D (1,25[OH]2D) regulates calcium (Ca), phosphate, and bone metabolism. Serum 1,25(OH)2D levels are reduced by low vitamin D status and high fibroblast growth factor 23 (FGF23) levels and increased by low Ca intake and high PTH levels. Natural genetic variation controls serum 25-hydroxyvitamin D (25[OH]D) levels, but it is unclear how it controls serum 1,25(OH)2D or the response of serum 1,25(OH)2D levels to dietary Ca restriction (RCR). Male mice from 11 inbred lines and from 51 BXD recombinant inbred lines were fed diets with either 0.5% (basal) or 0.25% Ca from 4 to 12 weeks of age (n = 8 per line per diet). Significant variation among the lines was found in basal serum 1,25(OH)2D and in the RCR as well as basal serum 25(OH)D and FGF23 levels. 1,25(OH)2D was not correlated to 25(OH)D but was negatively correlated to FGF23 (r = -0.5). Narrow sense heritability of 1,25(OH)2D was 0.67 on the 0.5% Ca diet, 0.66 on the 0.25% Ca diet, and 0.59 for the RCR, indicating a strong genetic control of serum 1,25(OH)2D. Genetic mapping revealed many loci controlling 1,25(OH)2D (seven loci) and the RCR (three loci) as well as 25(OH)D (four loci) and FGF23 (two loci); a locus on chromosome 18 controlled both 1,25(OH)2D and FGF23. Candidate genes underlying loci include the following: Ets1 (1,25[OH]2D), Elac1 (FGF23 and 1,25[OH]2D), Tbc1d15 (RCR), Plekha8 and Lyplal1 (25[OH]D), and Trim35 (FGF23). This report is the first to reveal that serum 1,25(OH)2D levels are controlled by multiple genetic factors and that some of these genetic loci interact with the dietary environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.