Glutamate, the major excitatory neurotransmitter, can cause the death of neurons by a mechanism known as excitotoxicity. This is a calcium-dependent process and activation of the NMDA receptor subtype contributes mainly to neuronal damage, due to its high permeability to calcium. Activation of calpain, a calcium-dependent cysteine protease, has been implicated in necrotic excitotoxic neuronal death. We have investigated the contribution of NMDA and non-NMDA ionotropic receptors to calpain activation and neuronal death induced by the acute administration of glutamate into the rat striatum. Calpain activity was assessed by the cleavage of the cytoskeletal protein, alpha-spectrin. Caspase-3 activity was also studied because glutamate can also lead to apoptosis. Results show no caspase-3 activity, but a strong calpain activation involving both NMDA and non-NMDA receptors. Although neuronal damage is mediated mainly by the NMDA receptor subtype, it can not be attributed solely to calpain activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.