Background and Objective
The sensory cell somata in the DRG contain all equipment necessary for extensive GABAergic signaling and are able to release GABA upon depolarization. With this study, we hypothesize that pain relief induced by conventional dorsal root ganglion stimulation (Con‐DRGS) in animals with experimental painful diabetic peripheral neuropathy is related to the release of GABA from DRG neurons. With use of quantitative immunocytochemistry, we hypothesize DRGS to result in a decreased intensity of intracellular GABA‐immunostaining in DRG somata.
Materials and Methods
Female Sprague‐Dawley rats (n = 31) were injected with streptozotocin (STZ) in order to induce Diabetes Mellitus. Animals that developed neuropathic pain after four weeks (Von Frey) were implanted with a unilateral DRGS device at L4 (n = 14). Animals were then stimulated for 30 min with Con‐DRGS (20 Hz, pulse width = 0.2 msec, amplitude = 67% of motor threshold, n = 8) or Sham‐DRGS (n = 6), while pain behavior (von Frey) was measured. DRGs were then collected and immunostained for GABA, and a relation to size of sensory cell soma diameter (small: 12–26 μm, assumed to be C‐fiber related sensory neurons; medium: 26–40 μm, assumed to be Aδ related sensory neurons; and large: 40–54 μm, assumed to be Aβ related sensory neurons) was made.
Results
DRGS treated animals showed significant reductions in STZ‐induced mechanical hypersensitivity. No significant differences in GABA immunostaining intensity per sensory neuron cell soma type (small‐, medium‐, or large‐sized) were noted in DRGs of stimulated (Con‐DRGS) animals versus Sham animals. No differences in GABA immunostaining intensity per sensory cell soma type in ipsi‐ as compared to contralateral DRGs were observed.
Conclusion
Con‐DRGS does not affect the average intracellular GABA immunofluorescence staining intensity in DRG sensory neurons of those animals which showed significant pain reduction. Similarly, no soma size related changes in intracellular GABA immunofluorescence were observed following Con‐DRGS.
Objective: Sacral neuromodulation (SNM) has been used to treat patients with lower urinary tract dysfunction and bowel dysfunction for many years. Success rates vary between 50% and 80%, indicating that there is much room for improvement. Altering stimulation parameters may result in improved outcome. This paper reports a systematic review of the clinical efficacy of nonconventional stimulation parameters on urinary tract and bowel dysfunction. Materials and Methods: Three databases were used for the literature search: Ovid (Medline, Embase) and PubMed. Papers were screened by two independent reviewers, who also extracted data from these papers. Clinical papers studying SNM stimulation parameters, that is, intermittent stimulation, frequency, pulse width, and amplitude, in urinary tract and bowel dysfunction were included. Quality of included papers was assessed using standardized guidelines. Results: Out of 5659 screened papers, 17 papers, studying various stimulation parameters, were included. Overall quality of these papers differed greatly, as some showed no risk of bias, whereas others showed high risk of bias. Stimulation parameters included intermittent stimulation, frequency, pulse width, amplitude, and unilateral vs. bilateral stimulation. Especially high frequency SNM and either a narrow or wide pulse width seem to improve efficacy in patients with bowel dysfunction. Additionally, implementation of short cycling intervals is promising to improve quality of life for patients with urinary tract or bowel dysfunction. Conclusion: The results of our systematic review indicate that stimulation parameters may improve efficacy of SNM in treatment of both urinary tract dysfunction and bowel dysfunction.
Objective: Conventional sacral neuromodulation (SNM) has shown to be an effective treatment for lower urinary tract and bowel dysfunction, but improvements of clinical outcome are still feasible. Currently, in preclinical research, new stimulation parameters are being investigated to achieve better and longer effects. This systematic review summarizes the status of SNM stimulation parameters and its effect on urinary tract and bowel dysfunction in preclinical research. Materials and Methods: The literature search was conducted using three databases: Ovid (Medline, Embase) and PubMed. Articles were included if they reported on stimulation parameters in animal studies for lower urinary tract or bowel dysfunction as a primary outcome. Methodological quality assessment was performed using the SYRCLE Risk of Bias (RoB) tool for animal studies. Results: Twenty-two articles were eligible for this systematic review and various aspects of stimulation parameters were included: frequency, intensity, pulse width, stimulation signal, timing of stimulation, and unilateral vs. bilateral stimulation. In general, all experimental studies reported an acute effect of SNM on urinary tract or bowel dysfunction, whereas at the same time, various stimulation settings were used. Conclusions: The results of this systematic review indicate that SNM has a positive therapeutic effect on lower urinary tract and bowel dysfunction. Using low-frequency-SNM, high-frequency-SNM, bilateral SNM, and higher pulse widths showed beneficial effects on storage and evacuation dysfunction in animal studies. An increased variability of stimulation parameters may serve as a basis for future improvement of the effect of SNM in patients suffering from urinary tract or bowel dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.