Biolaminates of Ixtle and Henequen natural fibers reinforced bio-based epoxy resin were prepared using Vacuum Assisted Resin Infusion process. ZnO nanoparticles were added to the bio-based epoxy resin at 1, 2 and 3 wt. % content before impregnation process. The viscoelastic and mechanical properties, as well as the fracture behavior, were evaluated and related to the nature of the fibers and filler content. The viscoelastic results indicated the ZnO particles are effective fillers just at low concentrations, and induce different reinforcement mechanisms attributed to the interaction between the nature of fibers and nanoparticles. The mechanical properties of the Ixtle biolaminates decreased at higher filler concentrations, while Henequen biolaminates showed better mechanical properties just above the 2 wt. % of ZnO. The fracture behavior in mode I registered moderate changes in toughness, related to the ZnO fraction, which promoted different behaviors on the interlaminar adherence of the layers. The results point to the need to continue evaluating the potential application of these green composites for their use in construction and automotive industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.