Genetic susceptibility has been described in insulin resistance (IR). Chemokine (C-C motif) ligand-2 (CCL2) is overexpressed in white adipose tissue and is the ligand of C-C motif receptor-2 (CCR2). The CCL2 G-2518A polymorphism is known to regulate gene expression, whereas the physiological effects of the CCR2Val64Ile polymorphism are unknown. The aim of the study is to investigate the relationship between these polymorphisms with soluble CCL2 levels (sCCL2), metabolic markers, and adiposity. In a cross-sectional study we included 380 Mexican-Mestizo individuals, classified with IR according to Stern criteria. Polymorphism was identified using PCR-RFLP/sequence-specific primers. Anthropometrics and metabolic markers were measured by routine methods and adipokines and sCCL2 by ELISA. The CCL2 polymorphism was associated with IR (polymorphic A+ phenotype frequencies were 70.9%, 82.6%, in individuals with and without IR, resp.). Phenotype carriers CCL2 (A+) displayed lower body mass and fat indexes, insulin and HOMA-IR, and higher adiponectin levels. Individuals with IR presented higher sCCL2 compared to individuals without IR and was associated with CCR2 (Ile+) phenotype. The double-polymorphic phenotype carriers (A+/Ile+) exhibited higher sCCL2 than double-wild-type phenotype carriers (A−/Ile−). The present findings suggest that sCCL2 production possibly will be associated with the adiposity and polymorphic phenotypes of CCL2 and CCR2, in Mexican-Mestizos with IR.
Background. In obesity there is a subclinical chronic low-grade inflammatory response where insulin resistance (IR) may develop. Chemerin is secreted in white adipose tissue and promotes low-grade inflammatory process, where it expressed CMKLR1 receptor. The role of chemerin and CMKLR1 in inflammatory process secondary to obesity is not defined yet. Methods. Cross-sectional study with 134 individuals classified as with and without obesity by body mass index (BMI) and IR. Body fat storage measurements and metabolic and inflammatory markers were measured by routine methods. Soluble chemerin and basal levels of insulin by ELISA and relative expression of CMKLR1 were evaluated with qPCR and 2−ΔΔCT method. Results. Differences (P < 0.05) were observed between obesity and lean individuals in body fat storage measurements and metabolic-inflammatory markers. Both CMKLR1 expression and chemerin levels were increased in obesity without IR. Soluble chemerin levels correlate with adiposity and metabolic markers (r = 8.8% to 38.5%), P < 0.05. Conclusion. The increment of CMKLR1 expression was associated with insulin production. Increased serum levels of chemerin in obesity were observed, favoring a dysmetabolic response. The results observed in this study suggest that both chemerin and CMKLR1 have opposite expression in the context of low-grade inflammatory response manifested in the development of IR.
Obesity, being an epidemy these days, is the trigger of metabolic disturbances such as cardiovascular disease, type 2 diabetes, and insulin resistance. Defined as an increase in fat storage, adipose tissue has been put under the spotlight as the culprit of these conditions, as it is composed not only by adipocytes but of any immune system cell and a singular extracellular matrix. Its behavior under acute and chronic hypercaloric states is quite different; persistent hypertrophy in the latter creates hypoxia, resulting in the release of reactive oxygen species and proinflammatory cytokines that impact on the immune response type of the resident leucocytes, mainly macrophages. Hypertrophy over hyperplasia, adipose tissue macrophages-M1 phenotype polarization, and the adipokines/myokines profile are thought to be regulated by foreign microRNAs, delivered from surrounding or distant cells by exosomes through the bloodstream. In this chapter, we focus on adipose tissue immunometabolism and how obesity causes the chronic inflammatory state, and, subsequently, this stablishes a pathologic adiposity, characterized by dyslipidemia and insulin resistance (IR).
Background. Obesity study in the context of scavenger receptors has been linked to atherosclerosis. CD36 and LOX-1 are important, since they have been associated with atherogenic and metabolic disease but not fat redistribution. The aim of our study was to determinate the association between CD36 and LOX-1 in presence of age and abdominal obesity. Methods. This is a cross-sectional study that included 151 healthy individuals, clinically and anthropometrically classified into two groups by age (<30 and ≥30 years old) and abdominal obesity (according to World Health Organization guidelines). We excluded individuals with any chronic and metabolic illness, use of medication, or smoking. Fasting blood samples were taken to perform determination of CD36 mRNA expression by real-time PCR, lipid profile and metabolic and low grade inflammation markers by routine methods, and soluble scavenger receptors (CD36 and LOX-1) by ELISA. Results. Individuals ≥30 years old with abdominal obesity presented high atherogenic index, lower soluble scavenger receptor levels, and subexpression of CD36 mRNA (54% less). On the other hand, individuals <30 years old with abdominal adiposity presented higher levels in the same parameters, except LOX-1 soluble levels. Conclusion. In this study, individuals over 30 years of age presented low soluble scavenger receptors levels pattern and CD36 gene subexpression, which suggest the chronic metabolic dysregulation in abdominal obesity.
Rheumatoid arthritis (RA) has been associated with insulin resistance (IR). Due to an excess in storage of white adipose tissue, IR has an inflammatory process that overlaps with RA. This is performed by the activation/migration of monocytes carried out by the CCR2/CCL2 and CMKLR1/RvE1 chemokines systems. Furthermore, these can potentiate chronic inflammation which is the central axis in the immunopathogenesis of RA. We evaluated the association between the relative expression of CCR2 and CMKLR1 and the serum levels of their ligands CCL2 and RvE1, in the context of adiposity status with IR as a comorbidity in RA. We studied 138 controls and 138 RA-patients classified with and without IR. We evaluated adiposity, RA activity, IR status and immunometabolic profiles by routine methods. Insulin, CCL2 and RvE1 serum levels were determined by ELISA. Relative expression of CCR2, CMKLR1 and RPS28 as constitutive gene by SYBR green RT-qPCR and 2-ΔΔCT method. Increased measurements were observed of body adiposity and metabolic status as follows: RA with IR>control group with IR>RA without IR> control group without IR. CCR2 and CMKLR1 relative expression was increased in RA without IR versus control without IR. CCR2: 2.3- and 1.3-fold increase and CMKLR1: 3.5- and 2.7-fold increase, respectively. Whereas, CCR2 expression correlates with CMKLR1 expression (rho = 0.331) and IR status (rho = 0.497 to 0.548). CMKLR1 expression correlates with inflammation markers (rho = 0.224 to 0.418). CCL2 levels were increased in the RA groups but levels of RvE1 were increased in RA without IR. We conclude that in RA with IR, the chemokine receptors expression pattern showed a parallel increase with their respective ligands. RA and IR in conjunction with the pathological distribution of body fat mass might exacerbate chronic inflammation. These results suggest that high CCL2 levels and compensatory RvE1 levels might not be enough to resolve the inflammation by themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.