Genome function in higher eukaryotes involves major changes in the spatial organization of the chromatin fiber. Nevertheless, our understanding of chromatin folding is remarkably limited. Polymer models have been used to describe chromatin folding. However, none of the proposed models gives a satisfactory explanation of experimental data. In particularly, they ignore that each chromosome occupies a confined space, i.e., the chromosome territory. Here, we present a polymer model that is able to describe key properties of chromatin over length scales ranging from 0.5 to 75 Mb. This random loop (RL) model assumes a self-avoiding random walk folding of the polymer backbone and defines a probability P for 2 monomers to interact, creating loops of a broad size range. Model predictions are compared with systematic measurements of chromatin folding of the q-arms of chromosomes 1 and 11. The RL model can explain our observed data and suggests that on the tens-of-megabases length scale P is small, i.e., 10 -30 loops per 100 Mb. This is sufficient to enforce folding inside the confined space of a chromosome territory. On the 0.5-to 3-Mb length scale chromatin compaction differs in different subchromosomal domains. This aspect of chromatin structure is incorporated in the RL model by introducing heterogeneity along the fiber contour length due to different local looping probabilities. The RL model creates a quantitative and predictive framework for the identification of nuclear components that are responsible for chromatin-chromatin interactions and determine the 3-dimensional organization of the chromatin fiber.genome organization ͉ polymer model ͉ chromatin folding T he chromatin fiber inside the interphase nucleus of higher eukaryotes is folded and compacted on several length scales. On the smallest scale the basic filament is formed by wrapping double-stranded DNA around a histone protein octamer, forming a nucleosomal unit every Ϸ200 bp. This beads-on-a-string type filament in turn condenses to a fiber of 30-nm diameter, which detailed organization is still under debate (1-3). At bigger length scales the spatial organization of chromatin in the interphase nucleus is even more unclear. Imaging techniques do not allow one to directly follow the folding path of the chromatin fiber in the interphase nucleus. Therefore, indirect approaches have been used to obtain information about chromatin folding. One way, pursued in this study, is fluorescence in situ hybridization (FISH) to measure the relationship between the physical distance between genomic sequence elements (in m) and their genomic distance (in megabases). There have been several attempts to explain the folding of chromatin in the interphase nucleus using polymer models. The strength of polymer models is their ability to make predictions on the structure of chromatin by pointing out the driving forces for observed folding motifs. These predictions can then be tested experimentally. However, a polymer model that is able to explain chromatin folding spanning differen...
Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-α, HP1-β, and HP1-γ are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs. Loss of HP1 results in high sensitivity to UV light and ionizing radiation in the nematode Caenorhabditis elegans, indicating that HP1 proteins are essential components of DNA damage response (DDR) systems. Analysis of single and double HP1 mutants in nematodes suggests that HP1 homologues have both unique and overlapping functions in the DDR. Our results show that HP1 proteins are important for DNA repair and may function to reorganize chromatin in response to damage.
In this study we demonstrate, at an ultrastructural level, the in situ distribution of heterogeneous nuclear RNA transcription sites after microinjection of 5-bromo-UTP (BrUTP) into the cytoplasm of living cells and subsequent postembedding immunoelectron microscopic visualization after different labeling periods. Moreover, immunocytochemical localization of several pre-mRNA transcription and processing factors has been carried out in the same cells. This high-resolution approach allowed us to reveal perichromatin regions as the most important sites of nucleoplasmic RNA transcription and the perichromatin fibrils (PFs) as in situ forms of nascent transcripts. Furthermore, we show that transcription takes place in a rather diffuse pattern, without notable local accumulation of transcription sites. RNA polymerase II, heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins, general transcription factor TFIIH, poly(A) polymerase, splicing factor SC-35, and Sm complex of small nuclear ribonucleoproteins (snRNPs) are associated with PFs. This strongly supports the idea that PFs are also sites of major pre-mRNA processing events. The absence of nascent transcripts, RNA polymerase II, poly(A) polymerase, and hnRNPs within the clusters of interchromatin granules rules out the possibility that this domain plays a role in pre-mRNA transcription and polyadenylation; however, interchromatin granule-associated zones contain RNA polymerase II, TFIIH, and Sm complex of snRNPs and, after longer periods of BrUTP incubation, also Br-labeled RNA. Their role in nuclear functions still remains enigmatic. In the nucleolus, transcription sites occur in the dense fibrillar component. Our fine structural results show that PFs represent the major nucleoplasmic structural domain involved in active premRNA transcriptional and processing events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.