There is a medical need for new insulin analogues. Yet, molecular alterations to the insulin molecule can theoretically result in analogues with carcinogenic effects. Preclinical carcinogenicity risk assessment for insulin analogues rests to a large extent on mitogenicity assays in cell lines. We therefore optimized mitogenicity assay conditions for a panel of five cell lines. All cell lines expressed insulin receptors (IR), IGF-I receptors (IGF-IR) and hybrid receptors, and in all cell lines, insulin as well as the comparator compounds X10 and IGF-I caused phosphorylation of the IR as well as IGF-IR. Insulin exhibited mitogenicity EC(50) values in the single-digit nanomolar to picomolar range. We observed correlations across cell types between (i) mitogenic potency of insulin and IGF-IR/IR ratio, (ii) Akt phosphorylation and mitogenic potency and (iii) Akt phosphorylation and IR phosphorylation. Using siRNA-mediated knockdown of IR and IGF-IR, we observed that in HCT 116 cells the IR appeared dominant in driving the mitogenic response to insulin, whereas in MCF7 cells the IGF-IR appeared dominant in driving the mitogenic response to insulin. Together, our results show that the IR as well as IGF-IR may contribute to the mitogenic potency of insulin. While insulin was a more potent mitogen than IGF-I in cells expressing more IR than IGF-IR, the hyper-mitogenic insulin analogue X10 was a more potent mitogen than insulin across all cell types, supporting that the hyper-mitogenic effect of X10 involves the IR as well as the IGF-IR. These results are relevant for preclinical safety assessment of developmental insulin analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.