Protein glycosylation is the most frequent post-translational modification and is present on more than 50% of eukaryotic proteins. Glycosylation covers a wide subset of modifications involving many types of complex oligosaccharide structures, making structural analysis of glycoproteins and their glycans challenging for most analytical techniques. Hydrogen/deuterium exchange monitored by mass spectrometry is a sensitive technique for investigation of protein conformational dynamics of complex heterogeneous proteins in solution. N-linked glycoproteins however pose a challenge for HDX-MS. HDX information can typically not be obtained from regions of the glycoprotein that contain the actual N-linked glycan as glycan heterogeneity combined with pepsin digestion yields a large diversity of peptic N-glycosylated peptides that can be difficult to detect. Here, we present a novel HDX-MS workflow for analysis of the conformational dynamics of N-linked glycoproteins that utilizes the enzyme PNGase A for deglycosylation of labeled peptic N-linked glycopeptides at HDX quench conditions, i.e., acidic pH and low temperature. PNGase A-based deglycosylation is thus performed after labeling (post-HDX) and the utility of this approach is demonstrated during analysis of the monoclonal antibody Trastuzumab for which it has been shown that the native conformational dynamics is dependent on the N-linked glycan. In summary, the HDX-MS workflow with integrated PNGase A deglycosylation enables analysis of the native HDX of protein regions containing N-linked glycan sites and should thus significantly improve our ability to study the conformational properties of glycoproteins.
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is now a routinely used technique to inform on protein structure, dynamics, and interactions. Localizing the incorporated deuterium content on a single residue basis increases the spatial resolution of this technique enabling detailed structural analysis. Here, we investigate the use of ultraviolet photodissociation (UVPD) at 213 nm to measure deuterium levels at single residue resolution in HDX-MS experiments. Using a selectively labeled peptide, we show that UVPD occurs without H/D scrambling as the peptide probe accurately retains its solution-phase deuterium labeling pattern. Our results indicate that UVPD provides an attractive alternative to electron mediated dissociation for increasing the spatial resolution of the HDX-MS experiment, capable of yielding high fragmentation efficiency, high fragment ion diversity, and low precursor ion charge-state dependency.
Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and FcRn affinity chromatography. The combination of experimental results demonstrates that differences between an IgG and its cognate YTE mutant vary with their pH-sensitive dynamics prior to binding FcRn. The conformational dynamics of these two molecules are nearly indistinguishable upon binding FcRn. We present evidence that pH-induced destabilization in the CH2/3 domain interface of IgG increases binding affinity by breaking intramolecular H-bonds and increases side-chain adaptability in sites that form intermolecular contacts with FcRn. Our results provide new insights into the mechanism of pH-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.
The precise catalytic strategies used for the breakdown of the complex bacterial polysaccharide xanthan, an increasingly frequent component of processed human foodstuffs, have remained a mystery. Here we present the characterization of an endo-xanthanase from Paenibacillus sp. 62047. We show that it is a CAZy family 9 glycoside hydrolase (GH9) responsible for the hydrolysis of the xanthan backbone, capable of generating tetrameric xanthan oligosaccharides from polysaccharide lyase family 8 (PL8) xanthan lyase-treated xanthan. 3-D structure determination reveals a complex multi-modular enzyme in which a catalytic (α/α)6 barrel is flanked by an N-terminal "immunoglobulin-like" (Ig-like) domain (frequently found in GH9 enzymes) and by four additional C-terminal all β-sheet domains which have very few homologs in sequence databases and, at least, one of which functions as a new xanthan-binding domain, now termed CBM84. The solution phase conformation and dynamics of the enzyme in the native calcium-bound state and in the absence of calcium were probed experimentally by hydrogen/deuterium exchange mass spectrometry. Measured conformational dynamics were used to guide the protein engineering of enzyme variants with increased stability in the absence of calcium; a property of interest for the potential use of the enzyme in cleaning detergents. The ability of hydrogen/deuterium exchange mass spectrometry to pinpoint dynamic regions of a protein under stress (e.g. removal of calcium ions) makes this technology a strong tool for improving protein catalyst properties by informed engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.