Different stimulants might induce different extracellular matrix profiles. It is essential to gain an understanding and quantification of these changes to allow for focused anti-fibrotic drug development. This study investigated the expression of extracellular matrix by dermal fibroblast mimicking fibrotic skin diseases as SSc using clinically validated biomarkers. Primary healthy human dermal fibroblasts were grown in media containing FICOLL. The cells were stimulated with PDGF-AB, TGF-β1, or IL-6. Anti-fibrotic compounds (iALK-5, Nintedanib) were added together with growth factors. Biomarkers of collagen formation and degradation together with fibronectin were evaluated by ELISAs in the collected supernatant. Immunohistochemical staining was performed to visualize fibroblasts and proteins, while selected gene expression levels were examined through qPCR. TGF-β and PDGF, and to a lesser extent IL-6, increased the metabolic activity of the fibroblasts. TGF-β primarily increased type I collagen and fibronectin protein and gene expression together with αSMA. PDGF stimulation resulted in increased type III and VI collagen formation and gene expression. IL-6 decreased fibronectin levels. iALK5 could inhibit TGF-β induced fibrosis while nintedanib could halt fibrosis induced by TGF-β or PDGF. Tocilizumab could not inhibit fibrosis induced in this model. The extent and nature of fibrosis are dependent on the stimulant. The model has potential as a pre-clinical model as the fibroblasts fibrotic phenotype could be reversed by an ALK5 inhibitor and Nintedanib.
BackgroundSystemic sclerosis (SSc) is characterized by excessive fibrosis throughout the body. This leads to the release of extracellular matrix (ECM) fragments into circulation, where they may be quantified as biomarkers. The objectives were to investigate levels of ECM turnover biomarkers and the diagnostic power of these.MethodsDiffuse SSc patients (n = 40) fulfilling the ACR/EULAR 2013 classification criteria and asymptomatic controls were included. Patients were divided into early (<2 years of symptoms; n = 20) and late (>10 years of symptoms; n = 20) diffuse SSc. Biomarkers of type I (C1M), III (C3A, C3M), IV (C4M), V (C5M) and VI (C6M) collagen degradation and type I (PRO-C1), II (PRO-C2), III (PRO-C3), IV (PRO-C4), V (PRO-C5) and VI (PRO-C6) collagen formation were measured in serum.Repeated measures ANOVA was used to test for differences in biomarker levels and the area under the receiver operating characteristic curve (AUC) was used to investigate the ability of the biomarkers to separate groups.ResultsIn early diffuse SSc, formation biomarkers of type III, IV, V and VI collagen were significantly increased compared to asymptomatic controls (p<0.0001). Moreover, in early diffuse SSc formation biomarkers of type III, V and VI collagen were significantly increased compared to late diffuse SSc (p = 0.0006, 0.003 and 0.004, respectively). Type I (p<0.0001), III (C3M: p = 0.001, and C3A: p = 0.02), IV (p<0.0001) and VI (p<0.0001) collagen degradation biomarkers significantly increased in early diffuse SSc compared to controls. C4M, C6M, PRO-C4, PRO-C5 and PRO-C6 had an AUC of >0.85 when assessing asymptomatic controls vs. diffuse SSc. Biomarkers of type VI collagen (PRO-C6 and C6M) turnover had the best separation with an AUC’s of >0.90.ConclusionFormation biomarkers of ECM turnover were shown to be significantly different between asymptomatic controls and diffuse SSc. This pilot study suggest that serological biomarkers of the ECM turnover is potentially applicable in SSc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.