Soil microbes constitute an important control on nitrogen (N) turnover and retention in arctic ecosystems where N availability is the main constraint on primary production. Ectomycorrhizal (ECM) symbioses may facilitate plant competition for the specific N pools available in various arctic ecosystems. We report here our study on the N uptake patterns of coexisting plants and microbes at two tundra sites with contrasting dominance of the circumpolar ECM shrub Betula nana. We added equimolar mixtures of glycine-N, NH4+ -N and NO3(-) -N, with one N form labelled with 15N at a time, and in the case of glycine, also labelled with 13C, either directly to the soil or to ECM fungal ingrowth bags. After 2 days, the vegetation contained 5.6, 7.7 and 9.1% (heath tundra) and 7.1, 14.3 and 12.5% (shrub tundra) of the glycine-, NH4+ - and NO3 (-) -(15)N, respectively, recovered in the plant-soil system, and the major part of 15N in the soil was immobilized by microbes (chloroform fumigation-extraction). In the subsequent 24 days, microbial N turnover transferred about half of the immobilized 15N to the non-extractable soil organic N pool, demonstrating that soil microbes played a major role in N turnover and retention in both tundra types. The ECM mycelial communities at the two tundras differed in N-form preferences, with a higher contribution of glycine to total N uptake at the heath tundra; however, the ECM mycelial communities at both sites strongly discriminated against NO3 (-) . Betula nana did not directly reflect ECM mycelial N uptake, and we conclude that N uptake by ECM plants is modulated by the N uptake patterns of both fungal and plant components of the symbiosis and by competitive interactions in the soil. Our field study furthermore showed that intact free amino acids are potentially important N sources for arctic ECM fungi and plants as well as for soil microorganisms.
Nitrogen (N) availability is the main constraint on primary production in most Arctic ecosystems, with microbial fixation of atmospheric N as the primary source of N input. However, there are only few reports on N fixation rates in relation to climate change in the Arctic. In order to investigate the effects of anticipated global climate change on N fixation rates in a subarctic moist heath, a field experiment was carried out in Northern Sweden. Warming was induced by plastic tents, and in order to simulate the effects of future increased tree cover, birch litter was added each fall for 9 years before the measurements. We analyzed N fixation rates on both whole-ecosystem level and specifically on two moss species: Sphagnum warnstorfii and Hylocomium splendens. The whole-ecosystem N fixation of the warmed plots almost tripled compared with the control plots. However, in the Sphagnum and Hylocomium mosses we observed either no change or occasionally even a decrease in N fixation after warming. Both measured on whole-ecosystem level and on the two moss species separately, litter addition increased N fixation rates. The results suggest that warming will lead to a general increased ecosystem N input, but also that the N fixation associated to some moss species is likely to decrease. Hence, this study shows that the scale of measurements is crucial when investigating on ecosystem responses to manipulations.
Biological nitrogen (N2) fixation is one of the main sources of available N for pristine ecosystems such as subarctic and arctic tundra. Although this has been acknowledged more than a decade ago, few attempts have been undertaken to identify the foremost driver of N2 fixation in the high Arctic. Here, we report results from in situ measurements of N2 fixation throughout the main growing period (June–August) in high arctic tundra, Greenland, in climate change treatments, shading and warming, and control. Nitrogen fixation was also measured in cores that received additional water prior to the measurements. The climate change field treatments did not lead to significant changes in any measured parameters; however, N2 fixation was promoted by adding water, and moisture was the most important factor influencing N2 fixation in all climate change field treatments. Maximum N2 fixation rates were measured below 14°C soil temperature, which is much lower than the theoretical and previously reported temperature optimum for the nitrogenase enzyme. Diazotroph (N2 fixing bacteria) communities are adapted to low temperatures in high arctic settings, and increased temperature in a future climate may lead to decreased N2 fixation rates, or to a shift in diazotroph communities.
Nitrogen (N) fixation by N2-fixing bacteria (diazotrophs) is the primary N input to pristine ecosystems like boreal forests and subarctic and arctic tundra. However, the contribution by the various diazotrophs to habitat N2 fixation remains unclear. We present results from in situ assessments of N2 fixation of five diazotroph associations (with a legume, lichen, feather moss, Sphagnum moss and free-living) incorporating the ground cover of the associations in five typical habitats in the subarctic (wet and dry heath, polygon-heath, birch forest, mire). Further, we assessed the importance of soil and air temperature, as well as moisture conditions for N2 fixation. Across the growing season, the legume had the highest total as well as the highest fraction of N2 fixation rates at habitat level in the heaths (>85 % of habitat N2 fixation), whereas the free-living diazotrophs had the highest N2 fixation rates in the polygon heath (56 %), the lichen in the birch forest (87 %) and Sphagnum in the mire (100 %). The feather moss did not contribute more than 15 % to habitat N2 fixation in any of the habitats despite its high ground cover. Moisture content seemed to be a major driver of N2 fixation in the lichen, feather moss and free-living diazotrophs. Our results show that the range of N2 fixers found in pristine habitats contribute differently to habitat N2 fixation and that ground cover of the associates does not necessarily mirror contribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.