Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-D-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are lacking. Here we report the design and synthesis of a novel dimeric inhibitor, Tat-NPEG4ðIETDVÞ 2 (Tat-N-dimer), which binds the tandem PDZ1-2 domain of PSD-95 with an unprecedented high affinity of 4.6 nM, and displays extensive protease-resistance as evaluated in vitro by stability-measurements in human blood plasma. X-ray crystallography, NMR, and small-angle X-ray scattering (SAXS) deduced a true bivalent interaction between dimeric inhibitor and PDZ1-2, and also provided a dynamic model of the conformational changes of PDZ1-2 induced by the dimeric inhibitor. A single intravenous injection of Tat-N-dimer (3 nmol∕g) to mice subjected to focal cerebral ischemia reduces infarct volume with 40% and restores motor functions. Thus, Tat-Ndimer is a highly efficacious neuroprotective agent with therapeutic potential in stroke.drug discovery | ischemic stroke | protein-protein interactions P rotein-protein interactions mediated by postsynaptic density protein-95 (PSD-95)/Discs-large/ZO-1 (PDZ) domains are important for intracellular signaling events, and several PDZ domains are potential drug targets for neuronal diseases and cancer (1, 2). The postsynaptic scaffolding protein PSD-95 simultaneously binds the N-methyl-D-aspartate (NMDA)-type of ionotropic glutamate receptors and the enzyme neuronal nitric oxide synthase (nNOS) through its PDZ1 and PDZ2 domains (3). Activation of the NMDA receptor causes influx of Ca 2þ , which activates nNOS thereby leading to nitric oxide generation (4), a key facilitator of glutamate-mediated excitotoxicity (5, 6). Ligands that bind to the first two PDZ domains of PSD-95 inhibit the formation of the ternary nNOS/PSD-95/NMDA receptor complex and uncouple the harmful production of nitric oxide from NMDA receptor activity (Fig. 1A). As PSD-95 inhibition does not affect ion-flux (7) or prosurvival signaling pathways (8) mediated by the NMDA receptor, it is believed that compounds targeting PDZ1 and PDZ2 of PSD-95 can provide an efficient and safe treatment of ischemic brain damage (9), where excitotoxicity is known to dominate in the acute poststroke period, as well as other NMDA receptor-related disorders such as chronic pain and Alzheimer's disease (10-14).The shallow and elongated binding pocket of PDZ domains generally favor binding of peptides or peptide analogues and so far no drug-like small-molecule inhibitors of PDZ domains with affinities below 5 μM have been identified (15). Accordingly, the most advanced PSD-95 inhibitor is a 20-mer peptide, Tat-NR2B9c (7, 8, 16), composed of nine amino acids corresponding to the C-terminal of the GluN2B subunit of the NMDA receptor, fused to the HIV-1 Tat peptide (17). This peptide has shown promising effects against ischemic brain damage in rats (...
We present a full-length α1β2γ2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues α1R66, β2T202, α1T129, β2E155, β2Y205 and the backbone of β2S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy calculations. Muscimol key interactions are predicted to be α1R66, β2T202, α1T129, β2E155, β2Y205 and β2F200. Furthermore, we argue that a water molecule could mediate further interactions between muscimol and the backbone of β2S156 and β2Y157. DZP is predicted to bind with interactions comparable to those of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines α1T206 and γ2T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important α1H101 and the N-methyl group near α1Y159, α1T206, and α1Y209. We present a binding mode of DZP in which the pending phenyl moiety of DZP is buried in the binding pocket and thus shielded from solvent exposure. Our full length GABAA receptor is made available as Model S1.
This article describes the transformation of the agricultural economy that took place as a result of the disintegration of the state provision of marketing in Uganda in the 1970s and 1980s. In this context, the article examines how the commercialization of food crops is constructing new relations of gender within agricultural production. In the transformation caused by the commercialization of food crops, men appeared to have gained total control over food production, causing the gender relations to move from a complementary to a patriarchal system. Closer examination, however, reveals an increased significance of marital bargaining and a movement from established gender roles to more negotiable relationships. The evidence underscores the continued significance of differentiated socioeconomic status to women's bargaining potential in gender relations.
Regulation and coordination of lipid metabolism involve complex interactions between the feeding regulatory centres in the nervous system and the regulated uptake, intracellular transport, storage, and utilization of stored lipids. As energy is essential to all cellular processes, it is thought that complex networks have evolved to ensure survival by maintaining adequate energy reservoirs. However, in times of nutrient abundance and imbalance, improper regulation and coordination of these networks can lead to obesity and other metabolic diseases and syndromes. Obesity genes must be considered as molecular components of such networks which function at an organismal level to orchestrate energy intake and expenditure. Thus, the functions of obesity genes must be understood within the context of these networks in intact animals. Since the majority of genes required for lipid homeostasis are evolutionarily conserved, much information can be obtained relevant to complex organisms by studying simple eukaryotes like C. elegans. Its genetic tractability makes C. elegans a highly attractive platform for identifying lipid regulatory pathways, drugs, and their molecular targets which ultimately will help us to understand the origin of metabolic diseases such as obesity and diabetes. Here we briefly present some central aspects of lipid accumulation in C. elegans and discuss its merits as a platform for identification and development of novel bioactive compounds regulating lipid storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.