Toluene is an important compound in the chemical industry as well as an often chosen simple surrogate compound for aromatic components in transport fuels. As a result, an improved understanding of the liquid phase oxidation of toluene is of interest to both the chemical industry and the transportation sector. In this work, a detailed autoxidation mechanism for the liquid phase oxidation of toluene is developed using an automated mechanism generation tool. The resultant mechanism is significantly improved using quantum chemistry calculations to update the thermodynamic parameters of key species in solution. Comparisons are made between the predicted and experimentally measured induction period and the obtained mechanism. The agreement between both is found to be within 1 order of magnitude. Rate of production analysis and sensitivity analysis are carried out to explain and understand the reactions paths present in the mechanism. The behavior of the mechanism is commented upon qualitatively; however, no quantitative data could be obtained with the selected test method.
The study of fuel oxidation stability is an important issue for the development of future fuels. Diesel and kerosene fuel systems have undergone several technological changes to fulfill environmental and economic requirements. These developments have resulted in increasingly severe operating conditions whose suitability for conventional and alternative fuels needs to be addressed. For example, fatty acid methyl esters (FAMEs) introduced as biodiesel are more prone to oxidation and may lead to deposit formation. Although several methods exist to evaluate fuel stability (induction period, peroxides, acids, and insolubles), no technique allows one to monitor the real-time oxidation mechanism and to measure the formation of oxidation intermediates that may lead to deposit formation. In this article, we developed an advanced oxidation procedure (AOP) based on two existing reactors. This procedure allows the simulation of different oxidation conditions and the monitoring of the oxidation progress by the means of macroscopic parameters, such as total acid number (TAN) and advanced analytical methods like gas chromatography coupled to mass spectrometry (GC-MS) and Fourier Transform Infrared -Attenuated Total Reflection (FTIR-ATR). We successfully applied AOP to gain an in-depth understanding of the oxidation kinetics of a model molecule (methyl oleate) and commercial diesel and biodiesel fuels. These developments represent a key strategy for fuel quality monitoring during logistics and on-board utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.