When transcription is to the right of the promoter, the "top," mRNA-synonymous strand of DNA tends to be purine-rich. When transcription is to the left of the promoter, the top, mRNA-template strand tends to be pyrimidine-rich. This transcription-direction rule suggests that there has been an evolutionary selection pressure for the purine-loading of RNAs. The politeness hypothesis states that purine-loading prevents distracting RNA-RNA interactions and excessive formation of double-stranded RNA, which might trigger various intracellular alarms. Because RNA-RNA interactions have a distinct entropy-driven component, the pressure for the evolution of purine-loading might be greater in organisms living at high temperatures. In support of this, we find that Chargaff differences (a measure of purine-loading) are greater in thermophiles than in nonthermophiles and extend to both purine bases. In thermophiles the pressure to purine-load affects codon choice, indicating that some features of their amino acid composition (e.g., high levels of glutamic acid) might reflect purine-loading pressure (i.e., constraints on mRNA) rather than direct constraints on protein structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.