MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. Genes encoding miRNAs are located in regions of the genome that are commonly amplified, deleted or rearranged. They are commonly dysregulated in human cancers and known to act as oncogenes or tumor suppressors. Members of the miR-200 miRNA family are downregulated in human cancer cells and tumors due to aberrant epigenetic gene silencing and play a critical role in the suppression of epithelial-to-mesenchymal transition (EMT), tumor cell adhesion, migration, invasion and metastasis, by targeting and repressing the expression of key mRNAs that are involved in EMT (ZEB1 and ZEB2), β-catenin/Wnt signaling (β-catenin), EGFR inhibitor resistance (ERRFI-1) and chemoresistance to therapeutic agents (TUBB3). Since the miR-200 family functions as putative tumor suppressors and represent biomarkers for poorly differentiated and aggressive cancers, restoration of miR-200 expression may have therapeutic implications for the treatment of metastatic and drug-resistant tumors.
Insulin-like growth factor 2 mRNA-binding protein-1 (IMP-1) is an oncofetal protein that binds directly to and stabilizes oncogenic c-Myc and regulates, in turn, its posttranscriptional expression and translation. In contrast to normal adult tissue, IMP-1 is reexpressed and/or overexpressed in human cancers. We show that knockdown of c-Myc in human colon cancer cell lines increases the expression of mature let-7 miRNA family members and downregulates several of its mRNA targets: IMP-1, Cdc34, and K-Ras. We further show that loss of IMP-1 inhibits Cdc34, Lin-28B, and K-Ras, suppresses SW-480 cell proliferation and anchorage-independent growth, and promotes caspase-and lamin-mediated cell death. We also found that IMP-1 binds to the coding region and 3 0 UTR of K-Ras mRNA. RNA microarray profiling and validation by reverse transcription PCR reveals that the p53-inducible proapoptotic protein CYFIP2 is upregulated in IMP-1 knockdown SW480 cells, a novel finding. We also show that overexpression of IMP-1 increases c-Myc and K-Ras expression and LIM2405 cell proliferation. Furthermore, we show that loss of IMP-1 induces Caspase-3-and PARP-mediated apoptosis, and inhibits K-Ras expression in SW480 cells, which is rescued by CYFIP2 knockdown. Importantly, analysis of 228 patients with colon cancers reveals that IMP-1 is significantly upregulated in differentiated colon tumors (P 0.0001) and correlates with K-Ras expression (r ¼ 0.35, P 0.0001) relative to adjacent normal mucosa. These findings indicate that IMP-1, interrelated with c-Myc, acts upstream of K-Ras to promote survival through a novel mechanism that may be important in colon cancer pathogenesis. Cancer Res; 71(6); 2172-82. Ó2011 AACR.
Lin28b is an RNA-binding protein that inhibits biogenesis of let-7 microRNAs. LIN28B is overexpressed in diverse cancers, yet a specific role in the molecular pathogenesis of colon cancer has yet to be elucidated. We have determined that human colon tumors exhibit decreased levels of mature let-7 isoforms and increased expression of LIN28B. In order to determine LIN28B's mechanistic role in colon cancer, we expressed LIN28B in immortalized colonic epithelial cells and human colon cancer cell lines. We found that LIN28B promotes cell migration, invasion, and transforms immortalized colonic epithelial cells. In addition, constitutive LIN28B expression increases expression of intestinal stem cell markers LGR5 and PROM1 in the presence of let-7 restoration. This may occur as a result of Lin28b protein binding LGR5 and PROM1 mRNA, suggesting that a subset of LIN28B functions are independent of its ability to repress let-7. Our findings establish a new role for LIN28B in human colon cancer pathogenesis, and suggest LIN28B post-transcriptionally regulates LGR5 and PROM1 through a let-7 independent mechanism.
Background-Although numerous signaling pathways are known to be activated in experimental cardiac hypertrophy, the molecular basis of the hypertrophic response inherent in human heart diseases remains largely unknown. Integrin-linked kinase (ILK) is a multifunctional protein kinase that physically links -integrins with the actin cytoskeleton, suggesting a potential mechanoreceptor role. Methods and Results-Here, we show a marked increase in ILK protein levels in hypertrophic ventricles of patients with congenital and acquired outflow tract obstruction. This increase in ILK was associated with activation of the Rho family guanine triphosphatases, Rac1 and Cdc42, and known hypertrophic signaling kinases, including extracellular signal-related kinases (ERK1/2) and p70 S6 kinase. Transgenic mice with cardiac-specific expression of a constitutively active ILK (ILK S343D ) or wild-type ILK (ILK
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.