Deglaciation of the Ross Sea following the last ice age provides an important opportunity to examine the stability of marine ice sheets and their susceptibility to changing environmental conditions. Insufficient chronology for Ross Sea deglaciation has helped sustain (i) the theory that this region contributed significantly to Meltwater Pulse 1A (MWP‐1A) and (ii) the idea that Ross Sea grounding‐line retreat occurred in a “swinging gate” pattern hinged north of Roosevelt Island. We present deglaciation records from southern Transantarctic Mountain glaciers, which delivered ice to the central Ross Sea. Abrupt thinning of these glaciers 9–8 kyr B.P. coincided with deglaciation of the Scott Coast, ∼800 km to the north, and ended with the Ross Sea grounding line near Shackleton Glacier. This deglaciation removed grounded ice from most of the central and western Ross Sea in less than 2 kyr. The Ross Sea Sector neither contributed nor responded significantly to MWP‐1A.
Abstract. We report cosmogenic-nuclide measurements from two isolated groups of nunataks in West Antarctica: the Pirrit Hills, located midway between the grounding line and the divide in the Weddell Sea sector, and the Whitmore Mountains, located along the Ross–Weddell divide. At the Pirrit Hills, evidence of glacial-stage ice cover extends ∼320 m above the present ice surface. Subsequent thinning mostly occurred after ∼14 kyr BP, and modern ice levels were established some time after ∼4 kyr BP. We infer that, like at other flank sites, these changes were primarily controlled by the position of the grounding line downstream. At the Whitmore Mountains, cosmogenic 14C concentrations in bedrock surfaces demonstrate that ice there was no more than ∼190 m thicker than present during the past ∼30 kyr. Combined with other constraints from West Antarctica, the 14C data imply that the divide was thicker than present for a period of less than ∼8 kyr within the past ∼15 kyr. These results are consistent with the hypothesis that the divide initially thickened due to the deglacial rise in snowfall and subsequently thinned in response to retreat of the ice-sheet margin. We use these data to evaluate several recently published ice-sheet models at the Pirrit Hills and Whitmore Mountains. Most of the models we consider do not match the observed timing and/or magnitude of thickness change at these sites. However, one model performs relatively well at both sites, which may, in part, be due to the fact that it was calibrated with geological observations of ice-thickness change from other sites in Antarctica.
High-elevation rock surfaces in Antarctica have some of the oldest cosmogenic-nuclide exposure ages on Earth, dating back to the Miocene. A compilation of all available 3He, 10Be, and 21Ne exposure-age data from the Antarctic continent shows that exposure histories recorded by these surfaces extend back to, but not before, the mid-Miocene cooling at 14–15 Ma. At high elevation, this cooling entailed a transition between a climate in which liquid water and biota were present and could contribute to surface weathering and erosion, and a polar desert climate in which virtually all weathering and erosion processes had been shut off. This climate appears to have continued uninterrupted between the mid-Miocene and the present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.