Objective The field of retinal prosthetics for artificial vision has advanced considerably in recent years, however clinical outcomes remain inconsistent. The performance of retinal prostheses is likely limited by the inability of electrical stimuli to preferentially activate different types of retinal ganglion cell (RGC). Approach Here we examine the response of rabbit RGCs to high-frequency stimulation, using biphasic pulses applied at 2000 pulses per second. Responses were recorded using cell-attached patch clamp methods, and stimulation was applied epiretinally via a small cone electrode. Results When prolonged stimulus trains were applied to OFF-Brisk Transient (BT) RGCs, the cells exhibited a non-monotonic relationship between response strength and stimulus amplitude; this response pattern was different from those elicited previously by other electrical stimuli. When the amplitude of the stimulus was modulated transiently from a non-zero baseline amplitude, ON-BT and OFF-BT cells exhibited different activity patterns: ON cells showed an increase in activity while OFF cells exhibited a decrease in activity. Using a different envelope to modulate the amplitude of the stimulus, we observed the opposite effect: ON cells exhibited a decrease in activity while OFF cells show an increase in activity. Significance As ON and OFF RGCs often exhibit opposing activity patterns in response to light stimulation, this work suggests that high-frequency electrical stimulation of RGCs may be able to elicit responses that are more physiological than traditional pulsatile stimuli. Additionally, the prospect of an electrical stimulus capable of cell-type specific selective activation has broad applications throughout the fields of neural stimulation and neuroprostheses.
Rectangular electrical pulses are the primary stimulus waveform used in retinal prosthetics as well as many other neural stimulation applications. Unfortunately, the utility of pulsatile stimuli is limited by the inability to avoid the activation of passing axons which can result in the distortion of the spatial patterns of elicited neural activity. Because avoiding axons would likely improve clinical outcomes, the examination of alternate stimulus waveforms is warranted. Here, we studied the response of rabbit retinal ganglion cells (RGCs) to sinusoidal electrical stimulation applied at frequencies of 5, 10, 25, and 100 Hz. Targeted RGCs were restricted to 4 common types: OFF-Brisk Transient, OFF-Sustained, ON-Brisk Transient, and ON-Sustained. Interestingly, response patterns varied between different types; the most notable difference was the relatively weak response of ON-Sustained cells to low frequencies. Calculation of total spike counts per trial revealed that lower frequencies are more charge efficient than high frequencies. Finally, experiments utilizing synaptic blockers revealed that 5 and 10 Hz activate photoreceptors while 25 and 100 Hz activate RGCs. Taken together, our results suggest that while sinusoidal electrical stimulation may provide a useful research tool, its clinical utility may be limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.