OVID-19 is caused by the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the majority of COVID-19 infections are relatively mild, with recovery typically within 2-3 weeks 1,2 , a significant number of patients develop severe illness, which is postulated to be related to both an overactive immune response and viral-induced pathology 3,4. The role of T cell immune responses in disease pathogenesis and longer-term protective immunity is currently poorly defined, but essential to understand in order to inform therapeutic interventions and vaccine design. Currently, there are many ongoing vaccine trials, but it is unknown whether they will provide long-lasting protective immunity. Most vaccines are designed to induce antibodies to the SARS-CoV-2 spike protein, but it is not yet known if this will be sufficient to induce full protective immunity to SARS-CoV-2 (refs. 5-8). Studying natural immunity to the virus, including the role of SARS-CoV-2specific T cells, is critical to fill the current knowledge gaps for improved vaccine design. For many primary virus infections, it typically takes 7-10 d to prime and expand adaptive T cell immune responses in order to control the virus 9. This coincides with the typical time it takes for patients with COVID-19 to either recover or develop severe illness. There is an incubation time of 4-7 d before symptom onset and a further 7-10 d before individuals progress to severe disease 10 .
Identification of the transmitted/founder virus makes possible, for the first time, a genome-wide analysis of host immune responses against the infecting HIV-1 proteome. A complete dissection was made of the primary HIV-1–specific T cell response induced in three acutely infected patients. Cellular assays, together with new algorithms which identify sites of positive selection in the virus genome, showed that primary HIV-1–specific T cells rapidly select escape mutations concurrent with falling virus load in acute infection. Kinetic analysis and mathematical modeling of virus immune escape showed that the contribution of CD8 T cell–mediated killing of productively infected cells was earlier and much greater than previously recognized and that it contributed to the initial decline of plasma virus in acute infection. After virus escape, these first T cell responses often rapidly waned, leaving or being succeeded by T cell responses to epitopes which escaped more slowly or were invariant. These latter responses are likely to be important in maintaining the already established virus set point. In addition to mutations selected by T cells, there were other selected regions that accrued mutations more gradually but were not associated with a T cell response. These included clusters of mutations in envelope that were targeted by NAbs, a few isolated sites that reverted to the consensus sequence, and bystander mutations in linkage with T cell–driven escape.
The HIV-1-specific cytotoxic T lymphocyte (CTL) response is temporally associated with the decline in viremia during primary HIV-1 infection, but definitive evidence that it is of importance in virus containment has been lacking. Here we show that in a patient whose early CTL response was focused on a highly immunodominant epitope in gp 160, there was rapid elimination of the transmitted virus strain and selection for a virus population bearing amino acid changes at a single residue within this epitope, which conferred escape from recognition by epitope-specific CTL. The magnitude (> 100-fold), kinetics (30-72 days from onset of symptoms) and genetic pathways of virus escape from CTL pressure were comparable to virus escape from antiretroviral therapy, indicating the biological significance of the CTL response in vivo. One aim of HIV-1 vaccines should thus be to elicit strong CTL responses against multiple codominant viral epitopes.
T cell proliferation in vivo is presumed to reflect a T cell receptor (TCR)-mediated polyclonal response directed to various environmental antigens. However, the massive proliferation of T cells seen in viral infections is suggestive of a bystander reaction driven by cytokines instead of the TCR. In mice, T cell proliferation in viral infections preferentially affected the CD44hi subset of CD8+ cells and was mimicked by injection of polyinosinic-polycytidylic acid [poly(I:C)], an inducer of type I interferon (IFN I), and also by purified IFN I; such proliferation was not associated with up-regulation of CD69 or CD25 expression, which implies that TCR signaling was not involved. IFN I [poly(I:C)]-stimulated CD8+ cells survived for prolonged periods in vivo and displayed the same phenotype as did long-lived antigen-specific CD8+ cells. IFN I also potentiated the clonal expansion and survival of CD8+ cells responding to specific antigen. Production of IFN I may thus play an important role in the generation and maintenance of specific memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.