Human immunodeficiency virus type 1 (HIV-1) Env-, Gag-, Pol-, Nef-, and Tat-specific cytotoxic Tlymphocyte (CTL) activities were quantitated temporally in five patients with symptomatic primary HIV-1 infection. A dominant CD8+-mediated, major histocompatibility complex class I-restricted CTL response to the HIV-1 envelope glycoprotein, gpl60, was noted in four of the five patients studied. The level of HIV-1-specific CTL activity in the five patients paralleled the efficiency of control of primary viremia. Patients who mounted strong gpl60-specific CTL responses showed rapid reduction of acute plasma viremia and antigenemia, while in contrast, primary viremia and antigenemia were poorly controlled in patients in whom virus-specific CTL activity was low or undetectable. These results suggest that HIV-1-specific CTL activity is a major component of the host immune response associated with the control of virus replication following primary HIV-1 infection and have important implications for the design of antiviral vaccines.
A SIGNIFICANT proportion (up to 70%) of individuals experience an acute clinical syndrome of varying severity associated with primary infection with the human immunodeficiency virus (HIV). We report here studies on six individuals who showed an acute HIV syndrome which generally resolved within four weeks, concomitant with a dramatic downregulation of viraemia. To characterize the T-cell-mediated primary immune response to HIV, we used combined semiquantitative polymerase chain reaction assay and cytofluorometry to analyse the T-cell antigen receptor repertoire in sequential peripheral blood mononuclear cells from the patients. We found major oligoclonal expansions in a restricted set of variable-domain beta-chain (V beta) families. Cells expressing the expanded V beta s predominantly expressed the CD8 T-cell differentiation antigen and mediated HIV-specific cytotoxicity. Major oligoclonal expansions of these CD8+ T lymphocytes may represent an important component of the primary immune response to viral infections and may help to clarify both the immunopathogenic and the protective mechanisms of HIV infection.
Despite the clinical importance of virus-induced immunosuppression, how virus infection may lead to a generalized suppression of the host immune response is poorly understood. To elucidate the principles involved, we analyzed the mechanism by which a lymphocytic choriomeningitis virus (LCMV) variant produces a generalized immune suppression in its natural host, the mouse. Whereas adult mice inoculated intravenously with LCMV Armstrong rapidly clear the infection and remain immunocompetent, inoculation with the Armstrong-derived LCMV variant clone 13, which differs from its parent virus at only two amino acid positions, by contrast results in persistent infection and a generalized deficit in responsiveness to subsequent immune challenge. Here we show that the immune suppression induced by LCMV clone 13 is associated with a CD8-dependent loss of interdigitating dendritic cells from periarteriolar lymphoid sheaths in the spleen and, functionally, with a deficit in the ability of splenocytes from infected mice to stimulate the proliferation of naive T cells in a primary mixed lymphocyte reaction. Dendritic cells are not depleted in immunocompetent Armstrong-infected mice. LCMV Armstrong and clone 13 exhibit differences in their tropism within the spleen, with clone 13 causing a higher level of infection of antigen-presenting cells in the white pulp, including periarterial interdigitating dendritic cells, than Armstrong, thereby rendering these cells targets for destruction by the antiviral CD8 ؉ cytotoxic T-lymphocyte response which is induced at early times following infection with either virus. Our findings illustrate the key role that virus tropism may play in determining pathogenicity and, further, document a mechanism for virus-induced immunosuppression which may contribute to the clinically important immune suppression associated with many virus infections, including human immunodeficiency virus type 1.
Isolates of lymphocytic choriomeningitis virus (LCMV) that elicit a cytotoxic T-lymphocyte response (CTL+) have been compared with isolates that suppress the CTL response (CTL-) in an effort to map this phenotype. A single amino acid change in the glycoprotein of the LCMV Armstrong (ARM) strain is consistently associated with the CTL-trait and the ability of the virus to persist (P+). The CTL+ P-parental strain spontaneously gives rise to CTL-P+ variants within lymphoid tissues of mice persistently infected from birth. To map the structural basis of the phenotype, the complete RNA sequence of LCMV ARM 53b (CTL+) was compared with that of its variant ARM clone 13 (CTL-). Differences in 5 of 10,600 nucleotides were found. Three changes are noted in the large L RNA segment, and two are noted in the small S RNA segment. Only two of the changes distinguishing CTL+ from CTL-isolates affect amino acid coding: lysine to glutamine at amino acid 1079 of the polymerase protein, and phenylalanine to leucine at amino acid 260 of the envelope glycoprotein (GP). We also analyzed two additional CTL-variants and four spontaneous CTL+ revertants. All three CTLvariants differ from the original CTL+ parental strain at GP amino acid 260, indicating that this amino acid change is consistently associated with the CTLphenotype. By contrast the other four mutations in LCMV are not associated with the CTL-phenotype. Sequence analysis of the coding regions of four CTL+ revertants of ARM clone 13 did not reveal back mutations at the GP 260 locus. This finding indicates that the GP 260 mutation is necessary but not sufficient for a CTL-P+ phenotype and that the reversion to CTL+ P-is likely either due to secondary mutations in other regions of the viral genome or to quasispecies within the revertant population that make significant contributions to the phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.