We construct Markov chain algorithms for sampling from discrete exponential families conditional on a sufficient statistic. Examples include contingency tables, logistic regression, and spectral analysis of permutation data. The algorithms involve computations in polynomial rings using Grobner bases.
Thisis an expository paper on the use of logarithmic Sobolev inequalities for bounding rates of convergence of Markov chains on finite state spaces to their stationary distributions. Logarithmic Sobolev inequalities complement eigenvalue techniques and work for nonreversible chains in continuous time. Some aspects of the theory simplify considerably with finite state spaces and we are able to give a self-contained development.Examples of applications include the study of a Metropolis chain for the binomial distribution, sharp results for natural chains on the box of side n in d dimensions and improved rates for exclusion processes. We also show that for most r-regular graphs the log-Sobolev constant is of smaller order than the spectral gap. The log-Sobolev constant of the asymmetric twopoint space is computed exactly as well as the log-Sobolev constant of the complete graph on n points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.