Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1.domestication ͉ evolution ͉ grass ͉ transcription factor ͉ vrs1
About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.
The rye (Secale cereale L.) chromosome arm 1RS is one of the most successfully used alien resources in wheat (Triticum aestivum L.) improvement, and it is still being widely utilized by many breeding programmes. With increasing application of marker-assisted selection in wheat breeding, development of an efficient molecular marker system to monitor and track 1AL.1RS and 1BL.1RS wheat-rye translocations is of practical value. In this study, we systematically evaluated the utility of eight rye-specific molecular markers in detecting 1RS chromatins with different origins in diverse wheat genetic backgrounds. Two such markers, PAWS5/S6 and SCM9 were identified that were able to differentiate multiple sources of wheat-rye translocations involving 1RS. A duplex polymerase chain reaction (PCR) procedure was developed with two rye-specific markers PAWS5/S6 and RIS and tested in a set of representative wheat lines. The two rye-specific markers and the duplex PCR procedure established in this study provided a useful tool in marker-assisted selection of materials containing desirable 1RS chromatin in wheat breeding.
Background and AimsBarley (Hordeum vulgare ssp. vulgare) cultivation started between 9500 and 8400 years ago, and was a major part of ancient agriculture in the Near East. The brittle rachis is a critical trait in the domestication process.MethodsA DNA sequence closely linked to the brittle rachis complex was amplified and resequenced in a collection of cultivated barleys, wild barleys (H. vulgare ssp. spontaneum) and weedy brittle rachis varieties (H. vulgare ssp. vulgare var. agriocrithon). The sequence was used to construct a phylogenetic tree.Key ResultsThe phylogeny separated the W- (btr1-carrying) from the E- (btr2-carrying) cultivars. The wild barleys had a high sequence diversity and were distributed throughout the W- and E-clades. Some of the Tibetan var. agriocrithon lines were closely related to the E-type and others to the W-type cultivated barleys, but an Israeli var. agriocrithon line has a complex origin.ConclusionsThe results are consistent with a diphyletic origin of barley. The W- and E-type cultivars are assumed to have evolved from previously diverged wild barley via independent mutations at Btr1 and Btr2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.