Application of urea in lowland rice fields leads to ammonia (NH3) volatilization and environmental pollution, and diminishes nitrogen recovery by rice (Oryza sativa L.). Amending urea with biochar could reduce NH3 loss from urea as well as improve chemical properties of acid soils. An incubation study was conducted using a closed-dynamic air flow system to determine NH3 volatilization from urea and chemical properties of an acid soil (Typic Paleudults). The soil was mixed with three rates of chicken litter biochar (20, 40, and 60 g pot−1) and 1.31 g urea. Mixing an acid soil with biochar (60 g pot−1) in waterlogged to stimulate conditions in paddy condition significantly reduced NH3 loss and total titratable acidity. Biochar application also increased soil pH, total nitrogen, available nitrate, organic matter, total organic carbon, total carbon, available phosphorus, and exchangeable cations. Thus, chicken litter biochar can be used to reduce urea-N loss and ameliorate chemical properties of acid soils. This aspect is being embarked on in our on-going field experiments.
Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation.
Adsorption and desorption of nitrogen (N), phosphorus (P), and potassium (K) soils are controlled by pH, pH buffering capacity, organic matter, and cation exchange capacity (CEC). These factors optimized to improve timely availability of N, P, and K crop use using organic amendments such as chicken litter biochar (CLB). The objective of this study was to determine the effects of CLB on N, P, K sorption and pH buffering capacity of an acid soil. Different rates of CLB were mixed with an acid soil for N, P, and K sorption and pH buffering capacity determination. The CLB increased soil pH and pH buffering capacity, but unlike P and K adsorption, the different rates of CLB significantly increased N adsorption, suggesting that this soil amendment has high affinity for N than P and K. Also, because CLB reduced N, P, and K desorption, it suggests that N in particular will be slowly released with time. The reduced N desorption but higher N adsorption further indicates that N can be temporary fixed by CLB. This work has revealed CLB is more effective controlling soil N availability for timely crop use to avoid losses.
The anionic nature and high cation exchange capacity (CEC) of clinoptilolite zeolite can be exploited to reduce ammonia (NH3) loss from urea and to improve soil chemical properties to increase nutrient utilization efficiency in lowland rice cultivation. A closed-dynamic airflow system was used to determine NH3 loss from treatments (20, 40, and 60 g clinoptilolite zeolite pot−1). Seed germination study was conducted to evaluate the effects of clinoptilolite zeolite on rice seed germination. A pot study was conducted to determine the effects of clinoptilolite zeolite on rice plant growth variables, nutrient uptake, nutrient recovery, and soil chemical properties. Standard procedures were used to determine NH3 loss, rice plant height, number of leaves, number of tillers, dry matter production, nutrient uptake, nutrient recovery, and soil chemical properties. Application of clinoptilolite zeolite (15%) increased shoot elongation of seedlings and significantly reduced NH3 loss (up to 26% with 60 g zeolite pot−1), and increased number of leaves, total dry matter, nutrient uptake, nutrient recovery, soil pH, CEC, and exchangeable Na+. Amending acid soils with clinoptilolite zeolite can significantly minimize NH3 loss and improve rice plant growth variables, nutrient uptake, nutrient recovery, and soil chemical properties. These findings are being validated in our ongoing field trials.
The physical and chemical properties of clinoptilolite zeolite can be used to enhance soil nutrient availability for optimum crop use. Amending nitrogen, phosphorus, and potassium fertilizers with clinoptilolite zeolite could create a pool of negative charges to retain and release nutrients timely for crop use. Thus, we used clinoptilolite zeolite to enhance Typic Paleudults sorption (adsorption and desorption) of nitrogen, phosphorus, potassium, and this soil’s pH buffering capacity. The treatments evaluated were: (i) 250 g soil alone, (ii) 20 g clinoptilolite zeolite alone, (iii) 250 g soil + 20 g clinoptilolite zeolite, (iv) 250 g soil + 40 g clinoptilolite zeolite, and (v) 250 g soil + 60 g clinoptilolite zeolite. Clinoptilolite zeolite increased soil nitrogen and potassium adsorption, nitrogen desorption, and soil pH. Moreover, ability of the soil to resist drastic change in pH (pH buffering capacity) was improved. Additionally, phosphorus adsorption and desorption of phosphorus and potassium were reduced. Higher potassium adsorption with lower potassium desorption suggests that the clinoptilolite zeolite sorbs potassium effectively. The clinoptilolite zeolite nitrogen, phosphorus, and potassium contributed to the reduction in the adsorption these nutrients. The clinoptilolite zeolite improved nitrogen, phosphorus, and potassium availability and soil buffering capacity to prevent these nutrients from being fixed or lost through for example, leaching. Therefore, clinoptilolite zeolite application could contribute to improved use of nitrogen, phosphorus, and potassium fertilizers to prevent soil, air, and water pollution. Additionally, our intervention could improve nitrogen, phosphorus, and potassium use efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.