Pseudomonas sp. BGI-2 is a psychrotrophic bacterium isolated from the ice sample collected from Batura glacier, Pakistan. This strain produces highly viscous colonies on agar media supplemented with glucose. In this study, we have optimized growth and production of exopolysaccharide (EPS) by the cold-adapted Pseudomonas sp. BGI-2 using different nutritional and environmental conditions. Pseudomonas sp. BGI-2 is able to grow in a wide range of temperatures (4-35 • C), pH (5-11), and salt concentrations (1-5%). Carbon utilization for growth and EPS production was extensively studied and we found that glucose, galactose, mannose, mannitol, and glycerol are the preferable carbon sources. The strain is also able to use sugar waste molasses as a growth substrate, an alternative for the relatively expensive sugars for large scale EPS production. Maximum EPS production was observed at 15 • C, pH 6, NaCl (10 g L −1), glucose as carbon source (100 g L −1), yeast extract as nitrogen source (10 g L −1), and glucose/yeast extract ratio (10/1). Under optimized conditions, EPS production was 2.01 g L −1 , which is relatively high for a Pseudomonas species compared to previous studies using the same method for quantification. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis of EPS revealed glucose, galactose, and glucosamine as the main sugar monomers. Membrane protection assay using human RBCs revealed significant reduction in cell lysis (∼50%) in the presence of EPS, suggesting its role in membrane protection. The EPS (5%) also conferred significant cryoprotection for a mesophilic Escherichia coli k12 which was comparable to glycerol (20%). Also, improvement in lipid peroxidation inhibition (in vitro) resulted when lipids from the E. coli was pretreated with EPS. Increased EPS production at low temperatures, freeze thaw tolerance of the EPS producing strain, and increased survivability of E. coli in the presence of EPS as cryoprotective agent supports the hypothesis that EPS production is a strategy for survival in extremely cold environments such as the glacier ice.
Sustainable development using wastes as resources is a new paradigm. Chicken manure contains rich amounts of nitrogen and phosphorus and has been used as crop fertilizer. However, little is known about whether nutrients of chicken manure are suitable and efficient to support the rapid growth of microalgae. In this study, we explore the possibility of using nutrient extracted from chicken manure to grow microalgae. We used an algal strain Scenedesmus sp. HTB1, which is an oleaginous species with high CO 2 tolerance capability. The growth performance of HTB1 on various media amended with nutrient extracted from three different chicken manure sources was monitored and compared to the growth rate of HTB1 grown in the standard medium BG11. Meanwhile, the changes of total nitrogen (N) and phosphorus (P), both organic and inorganic, were measured during the growth period. Culture media enriched with the nutrient extracted from two chicken manure sources outperformed the standard culture medium BG11 in terms of algal biomass production. When cultivated with manure nutrient, HTB1 utilized inorganic N efficiently, but consumed very little organic N during the experimental growth period. However, HTB1 was able to utilize both organic and inorganic phosphorus. We demonstrate that nutrient extracted from chicken manure support rapid growth and high biomass yield in microalgae Scenedesmus obliquus HTB1. Therefore chicken manure holds great promise to be used as a cost-effective and efficient fertilizer for large-scale production of microalgae.
Karakoram mountain range contains the tallest mountain peaks of the world with thousands of glaciers which are microbiologically untapped. This is a pioneer approach of isolation and characterization of fungi from Batura glacier, Karakoram, Pakistan. Total number (CFU/mL or g) was determined at 4 °C and 15 °C to isolate psychrophilic and psychrotrophic fungi, respectively. About 33 different fungi were isolated from sediment (29), ice (2) and water (2) and were identified morphologically and by sequencing of specific internal transcribed spacer region of the species through internal transcribed spacer 1 (ITS1) and internal transcribed spacer 2 (ITS2) primers. Mostly, the fungal isolates belonged to genus Penicillium, followed by Cladosporium,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.