Stem cell based-therapies represent a possible solution to repair damaged myocardial tissue by promoting cardioprotection, angiogenesis, and reduced fibrosis. However, recent evidence indicates that most of the positive outcomes are likely due to the release of paracrine factors (cytokines, growth factors, and exosomes) from the cells and not because of the local engraftment of stem cells. This cocktail of essential growth factors and paracrine signals is known as secretome can be isolated in vitro, and the biomolecule composition can be controlled by varying stem-cell culture conditions. Here, we propose a straightforward strategy to deliver secretome produced from hASCs by using a nanocomposite injectable hydrogel made of gelatin and Laponite®. The designed secretome-loaded hydrogel represents a promising alternative to traditional stem cell therapy for the treatment of acute myocardial infarction.
An innovative approach for cardiac regeneration following injury is to induce endogenous cardiomyocyte (CM) cell cycle re-entry. In the present study, CMs from adult rat hearts were isolated and transfected with cel-miR-67 (control) and rno-miR-210. A significant increase in CM proliferation and mono-nucleation were observed in miR-210 group, in addition to a reduction in CM size, multi-nucleation, and cell death. When compared to control, β-catenin and Bcl-2 were upregulated while APC (adenomatous polyposis coli), p16, and caspase-3 were downregulated in miR-210 group. In silico analysis predicted cell cycle inhibitor, APC, as a direct target of miR-210 in rodents. Moreover, compared to control, a significant increase in CM survival and proliferation were observed with siRNA-mediated inhibition of APC. Furthermore, miR-210 overexpressing C57BL/6 mice (210-TG) were used for short-term ischemia/reperfusion study, revealing smaller cell size, increased mono-nucleation, decreased multi-nucleation, and increased CM proliferation in 210-TG hearts in contrast to wild-type (NTG). Likewise, myocardial infarction (MI) was created in adult mice, echocardiography was performed, and the hearts were harvested for immunohistochemistry and molecular studies. Compared to NTG, 210-TG hearts showed a significant increase in CM proliferation, reduced apoptosis, upregulated angiogenesis, reduced infarct size, and overall improvement in cardiac function following MI. β-catenin, Bcl-2, and VEGF (vascular endothelial growth factor) were upregulated while APC, p16, and caspase-3 were downregulated in 210-TG hearts. Overall, constitutive overexpression of miR-210 rescues heart function following cardiac injury in adult mice via promoting CM proliferation, cell survival, and angiogenesis.
BackgroundMyocardial infarction results in a large‐scale cardiomyocyte loss and heart failure due to subsequent pathological remodeling. Whereas zebrafish and neonatal mice have evident cardiomyocyte expansion following injury, adult mammalian cardiomyocytes are principally nonproliferative. Despite historical presumptions of stem cell–mediated cardiac regeneration, numerous recent studies using advanced lineage‐tracing methods demonstrated that the only source of cardiomyocyte renewal originates from the extant myocardium; thus, the augmented proliferation of preexisting adult cardiomyocytes remains a leading therapeutic approach toward cardiac regeneration. In the present study we investigate the significance of suppressing cell cycle inhibitors Rb1 and Meis2 to promote adult cardiomyocyte reentry to the cell cycle.Methods and ResultsIn vitro experiments with small interfering RNA–mediated simultaneous knockdown of Rb1 and Meis2 in both adult rat cardiomyocytes, isolated from 12‐week‐old Fischer rats, and human induced pluripotent stem cell–derived cardiomyocytes showed a significant increase in cell number, a decrease in cell size, and an increase in mononucleated cardiomyocytes. In vivo, a hydrogel‐based delivery method for small interfering RNA–mediated silencing of Rb1 and Meis2 is utilized following myocardial infarction. Immunofluorescent imaging analysis revealed a significant increase in proliferation markers 5‐ethynyl‐2′‐deoxyuridine, PH3, KI67, and Aurora B in adult cardiomyocytes as well as improved cell survivability with the additional benefit of enhanced peri‐infarct angiogenesis. Together, this intervention resulted in a reduced infarct size and improved cardiac function post–myocardial infarction.ConclusionsSilencing of senescence‐inducing pathways in adult cardiomyocytes via inhibition of Rb1 and Meis2 results in marked cardiomyocyte proliferation and increased protection of cardiac function in the setting of ischemic injury.
BackgroundThe interactions among various biomarkers remained unexplored under the stressful environment of high-altitude. Present study evaluated interactions among biomarkers to study susceptibility for high altitude pulmonary edema (HAPE) in HAPE-patients (HAPE-p) and adaptation in highland natives (HLs); both in comparison to HAPE-free sojourners (HAPE-f).Methodology/Principal FindingsAll the subjects were recruited at 3500 m. We measured clinical parameters, biochemical levels in plasma and gene expression using RNA from blood; analyzed various correlations between and among the clinical parameters, especially arterial oxygen saturation (SaO2) and mean arterial pressure (MAP) and biochemical parameters like, asymmetric dimethylarginine (ADMA), serotonin (5-HT), 8-iso-prostaglandin F2α (8-isoPGF2α), endothelin-1 (ET-1), plasma renin activity (PRA), plasma aldosterone concentration (PAC), superoxide dismutase (SOD) and nitric oxide (NO) in HAPE-p, HAPE-f and HLs. ADMA, 5-HT, 8-isoPGF2α, ET-1 levels, and PAC were significantly higher (p<0.0001, each), whereas SOD activity and NO level were significantly lower in HAPE-p than HAPE-f (p≤0.001). Furthermore, ADMA, 5-HT, 8-isoPGF2α, NO levels and PAC were significantly higher (p<0.0001), whereas ET-1 level significantly (p<0.0001) and SOD activity non-significantly (p>0.05) lower in HLs than HAPE-f. The expression of respective genes differed in the three groups. In the correlations, SaO2 inversely correlated with ADMA, 5-HT and 8-isoPGF2α and positively with SOD in HAPE-p (p≤0.009). MAP correlated positively with 5-HT and 8-isoPGF2α in HAPE-p and HLs (p≤0.004). A strong positive correlation was observed between ADMA and 5-HT, 5-HT and 8-isoPGF2α (p≤0.001), whereas inverse correlation of SOD with ET-1 in HAPE-p and HLs (p≤0.004), with 5-HT and 8-isoPGF2α in HAPE-p (p = 0.01) and with 5-HT in HLs (p = 0.05).Conclusions/SignificanceThe interactions among these markers confer enhanced vascular activity in HLs and HAPE in sojourners.
HAPE (high-altitude pulmonary oedema) is characterized by pulmonary hypertension, vasoconstriction and an imbalance in oxygen-sensing redox switches. Excess ROS (reactive oxygen species) contribute to endothelial damage under hypobaric hypoxia, hence the oxidative-stress-related genes CYBA (cytochrome b-245 α polypeptide) and GSTP1 (glutathione transferase Pi 1) are potential candidate genes for HAPE. In the present study, we investigated the polymorphisms -930A/G and H72Y (C/T) of CYBA and I105V (A/G) and A114V (C/T) of GSTP1, individually and in combination, in 150 HAPE-p (HAPE patients), 180 HAPE-r (HAPE-resistant lowland natives) and 180 HLs (healthy highland natives). 8-Iso-PGF2α (8-iso-prostaglandin F2α) levels were determined in plasma and were correlated with individual alleles, genotype, haplotype and gene-gene interactions. The relative expression of CYBA and GSTP1 were determined in peripheral blood leucocytes. The genotype distribution of -930A/G, H72Y (C/T) and I105V (A/G) differed significantly in HAPE-p compared with HAPE-r and HLs (P≤0.01). The haplotypes G-C of -930A/G and H72Y (C/T) in CYBA and G-C and G-T of I105V (A/G) and A114V (C/T) in GSTP1 were over-represented in HAPE-p; in contrast, haplotypes A-T of -930A/G and H72Y (C/T) in CYBA and A-C of I105V (A/G) and A114V (C/T) in GSTP1 were over-represented in HAPE-r and HLs. 8-Iso-PGF2α levels were significantly higher in HAPE-p and in HLs than in HAPE-r (P=2.2×10(-16) and 1.2×10(-14) respectively) and the expression of CYBA and GSTP1 varied differentially (P<0.05). Regression analysis showed that the risk alleles G, C, G and T of -930A/G, H72Y (C/T), I105V (A/G) and A114V (C/T) were associated with increased 8-iso-PGF2α levels (P<0.05). Interaction between the two genes revealed over-representation of most of the risk-allele-associated genotype combinations in HAPE-p and protective-allele-associated genotype combinations in HLs. In conclusion, the risk alleles of CYBA and GSTP1, their haplotypes and gene-gene interactions are associated with imbalanced oxidative stress and, thereby, with high-altitude adaptation and mal-adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.