Polyphenols of Laurel and Myrtle exhibit structural diversity, which affects bioavailability, metabolism, and bioactivity. The gut microbiota plays a key role in modulating the production, bioavailability and, thus the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. The aim of this study was to investigate whether the polyphenolic components of Laurel and Myrtle aqueous extract have beneficial effects on rat health. The growth of lactic acid bacteria (LAB), β-glucuronidase, β-glucosidase, β-galactosidase activity, pH value, body weight change and food efficacy ratio after intragastric treatment of rats with Laurel and Myrtle extract at doses of 50 and 100 mg/kg for two weeks were investigated. The endogenous populations of colonic probiotic bacteria (Lactobacilli and Bifidobacteria) were counted on selective media. According to the obtained data, Laurel extract in the applied dose of 50 and 100 and Myrtle extract (100 mg/kg) positively affects the rats health by increasing the number of colonies of Lactobacilli and Bifidobacteria compared to the control group, causes changes in glycolytic enzymatic activity and minor change in antioxidative tissue activity. In addition, high doses of Laurel increase food efficiency ratio, while Myrtle has the same effect at a lower dose.
Valproate is a common antiepileptic drug whose adverse effects include liver steatosis and dyslipidaemia. The aim of our study was to see how natural flavonoid antioxidant naringin would interact with valproate and attenuate these adverse effects. For this reason we treated male C57BL6 mice with a combination of 150 mg/kg of valproate and 25 mg/kg naringin every day for 10 days and compared their serum triglycerides, cholesterol, LDL, HDL, VLDL, and liver PPAR-alpha, PGC-1 alpha, ACOX1, Nrf2, SOD, CAT, GSH, and histological signs of steatosis. Valproate increased lipid peroxidation parameters and caused pronounced microvesicular steatosis throughout the hepatic lobule in all acinar zones, but naringin co-administration limited steatosis to the lobule periphery. In addition, it nearly restored total serum cholesterol, LDL, and triglycerides and liver ACOX1 and MDA to control levels. and upregulated PPAR-alpha and PGC-1 alpha, otherwise severely downregulated by valproate. It also increased SOD activity. All these findings suggest that naringin modulates key lipid metabolism regulators and should further be investigated in this model, either alone or combined with other lipid regulating drugs or molecules.
Lung secretions from patients with bronchiectasis have been studied before and during treatment with amoxycillin/clavulanate (Augmentin 750 mg tds). beta-Lactamase activity was usually present in the sputum sol phase and originated from organisms not usually considered to be the major pathogen. The presence of beta-lactamase was related to inactivation of amoxycillin in the lung secretions. Extensive bacteriological investigation of the sputum before therapy showed several organisms to be present in each sample. Six of eight patients showed a good clinical and biochemical response to therapy with amoxycillin/clavulanate. This, however, could not be predicted or explained by the results of bacterial investigation although Haemophilus influenzae was eradicated in three of these responders. beta-Lactamase activity did not change during treatment, and this investigation thus failed to produce indirect evidence of penetration of clavulanate into the secretions.
Lactamase activity was measured in secretions from patients with bronchiectasis. Of 28 sputum samples, 23 contained measurable amounts of activity; values were significantly higher (P < 0.01) in purulent samples than in mucoid or mucopurulent samples. I-Lactamase activity was usually present in saliva collected before and between sputum expectorations, although values for sputum were higher than for either group of saliva samples (P < 0.025 and P < 0.005, respectively). This difference suggests that at least part of sputum P-lactamase activity originates in the bronchial tree. Detailed microbiological study of a further eight specimens (seven were PI-lactamase positive) led to the isolation of Haemophilus influenzae from six, although only two of these isolates were P-lactamase positive. Several other jl-lactamase-producing organisms were also isolated, including Staphylococcus aureus (n = 3), Escherichia coli (n = 1), Proteus spp. (n = 1), and Bacteroides spp. (n = 3). Size-exclusion high-performance liquid chromatography of the sputum showed several peaks of P-lactamase activity which usually coeluted in fractions similar to those of their jPlactamase-positive isolates. Therefore, sources of sputum ,I-lactamases are often bacteria not considered truly pathogenic or not isolated during routine bacteriological assessment. These observations should be considered when embarking on antimicrobial therapy in bronchiectatic patients and suggest that increased dosages of penicillins are indicated.
Research background. The use of plants and their extracts in treatments of chronic diseases is widely known in traditional medicine. The aim of this study is to determine the effects of 10-day consumption of Prunus spinosa L. flower extract on blood glucose, glycaemic load, serum α-amlyase and serum insulin, in normoglycaemic and hypergycaemic (alloxan) mice model. Experimental approach. Normoglycemic and hyperglycemic (alloxan treated, 150 mg/kg body mass) C57BL/6 mice were treated daily, during 10 days, with Prunus spinosa L. flower extract by gavage. The sugar content within extract was determined by HPLC analysis. In mice, blood and serum blood glucose level and OGTT-test were determined by blood glucometer. Serum insulin was determined by ELISA assay and α-amlyase by colourimetric assay. Results and conclusions. The Prunus spinosa L. flower extract increased glucose in normoglycaemic mice by 30 % after 1st and 5th day and by 17 % after 10th day of consumption in normoglycaemic mice. It is a consequence of released sugars because sugar analysis revealed 59.8 mg/L monosaccharides, mainly fructose (55.7 mg/L) and glucose (24.3 mg/L) within the extract. On the opposite, the extract consumption, reduced serum blood glucose in alloxan-induced hyperglycaemic mice by 29 % after 10 days of treatment. Oral glucose tolerance test also confirmed that that in the hyperglycaemic group treated with Prunus spinosa L. flower extract glucose homeostasis was improved and showed decrease in blood glucose, since the blood glucose over the period of 120 min, glucose homeostasis is faster achieved after treatment with shows that in Prunus spinosa L. flower extract. Serum insulin increased by 49 % and serum alpha amylase by 46 % after 10 days of treatment with Prunus spinosa L. flower extract in hyperglycaemic group. Thus, it can be concluded that Prunus spinosa L. flower extract improved glucose tolerance, enhanced insulin secretion and lowered serum α-amylase activity. Novelty and scientific contribution. The results examined for the first time the potential of Prunus spinosa L. flower extract in hyperglycaemia management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.