The pandemic of COVID-19 and the resulting countermeasures have made it difficult or impossible to perform listening tests in controlled laboratory environments. This paper examines the possibility of using speech for level calibration of sound reproduction systems used in listening tests performed in non-laboratory conditions, i.e., when such tests are distributed through the means of electronic communication and performed in a home environment. Moreover, a larger pool of potential test subjects can be reached in this manner. The perception of what the “normal” level of reproduced speech should be was examined through a listening experiment by letting the listeners set the level of reproduced speech samples as they saw fit, depending on the used sound reproduction system, the (non)existence of visual stimulus, and the voice of the speaker. The results show that the perception of normal speech level is highly individual when it comes to setting that level by listening to reproduced speech. The interindividual differences between the subjects are considerably larger than the impact of the three main effects. The understanding of what the “normal” level of read speech should be was examined experimentally as well by asking the subjects to read a paragraph of text, depending on the visual stimulus. The results show that the “normal” level of read speech is reasonably consistent and averages at 55 dBA at a normal conversational distance of 1 m, in a room with room acoustics conditions typical for home environment and low background noise, and with the visual stimulus that mimics the interlocutor put within the personal space of the reader. A preliminary proposal is given of a level calibration method for non-laboratory listening experiments based on these results, and some of its aspects that require further research are discussed.
Binaural synthesis with head tracking is often used in spatial audio systems. The devices used for head tracking must provide data on the orientation of the listener’s head. These data need to be highly accurate, and they need to be provided as fast and as frequently as possible. Therefore, head-tracking devices need to be equipped with high-quality inertial measurement unit (IMU) sensors. Since IMUs readily include triaxial accelerometers, gyroscopes, and magnetometers, it is crucial that all of these sensors perform well, as the head orientation is calculated from all sensor outputs. This paper discusses the challenges encountered in the process of the performance assessment of IMUs through appropriate measurements. Three distinct hardware platforms were investigated: five IMU sensors either connected to Arduino-based embedded systems or being an integral part of one, five smartphones across a broad range of overall quality with integrated IMUs, and a commercial virtual reality unit that utilizes a headset with integrated IMUs. An innovative measurement method is presented and proposed for comparing the performance of sensors on all three platforms. The results of the measurements performed using the proposed method show that all three investigated platforms are adequate for the acquisition of the data required for calculating the orientation of a device as the input to the binaural synthesis process. Some limitations that have been observed during the measurements, regarding data acquisition and transfer, are discussed.
In order to better align existing and future ICT implementations in the health domain with the strategic options defined by the National Plan for Health Development, the Ministry of Health (MoH) of Burundi initiated in 2014 the development of a national e-health enterprise architecture based on the TOGAF methodology. A first part of the development cycle consisted of a detailed analysis of regulatory documents and strategic plans related to the Burundian health system. In a second part, semi-structured interviews were organized with a representative sample of relevant MoH health structures. The study demonstrated the donor driven unequal distribution of hardware equipment over health administration components and health facilities. Internet connectivity remains problematic and few health oriented business applications found their way to the Burundian health system. Paper based instruments remain predominant in Burundi's health administration. The study also identified a series of problems introduced by the uncoordinated development of health ICT in Burundi such as the lack of standardization, data security risks, varying data quality, inadequate ICT infrastructures, an unregulated e-health sector and insufficient human capacity. The results confirm the challenging situation of the Burundian health information system but they also expose a number of bright spots that provide hope for the future: a political will to reclaim MoH leadership in the health information management domain, the readiness to develop e-health education and training programs and the opportunity to capitalize the experiences with DHIS2 deployment, results based financing monitoring and hospital information management systems implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.