Steady shear flow properties of an extensive family of dendrimers were examined for the first time in medium to high concentration solutions. For this, the first seven generations of ethylenediamine (EDA) core-polyamidoamine (PAMAM) dendrimers, having molecular weights from about 500 to almost 60 000 in 30 to 75 wt % solutions in ethylenediamine (EDA) were used. It was found that these dendrimer solutions exhibited typical Newtonian flow behavior as manifested by direct proportionality of the shear stress to the shear rate (i.e., constant viscosity with respect to both shear stress and shear rate) over the entire range of shear stress and shear rate studied. In addition to this, there was no abrupt change in the slope of the shear viscosity vs molecular weight relationship, indicating that these dendrimers do not interpenetrate to form transient quasi-networks of the "entanglement"-type typically found for long-chain linear or randomly branched macromolecules, nor do they engage in "sticking" interactions characteristic for the suspensions of idealized spherical particles. This rheological behavior is without precedence among high molecular weight synthetic polymers, and it is proposed that it is solely driven by the unique dendrimer macromolecular architecture which above a certain critical generation results in globular, nanoscopic spheroids whose outer surfaces close upon themselves and become impenetrable for other dendrimers or large molecules. The shear viscosity vs volume fraction dependencies showed that these dendrimers are draining to solvent molecules, but to a lesser extent than the corresponding random-coil type linear macromolecules of comparable molecular weights. These findings are consistent with a "dense-shell" model of dendrimer intramolecular morphology which can also explain their ability to encapsulate small molecular weight species in their "soft and spongy" interiors. From a typical Arrhenius-type temperature dependence of these dendrimer solutions viscosities and from the dependencies of their flow activation energy on molecular weight, it seems that the smallest kinetic unit involved in the dendrimer flow is the dendrimer molecule itself. Strong dependence of the dendrimer solution viscosity on concentration and temperature, as well as its independence on repeated loading, indicates substantial dendrimer flexibility and ability to deform. On the basis of these results and the supporting computer modeling calculations, it is proposed that the Newtonian flow behavior and the lack of an abrupt change of slope in the zero-shear viscosity vs molecular weight relationships represent characteristic "fingerprint" properties for dendrimers in general and that these properties distinguish these unique macromolecules from all other traditional classes of macromolecular architecture. It is also proposed that the critical degree of branching may be used as a defining structural criterion for distinguishing true dendrimers from their low molecular weight simple branched precursors.
Rheological behavior of the first eight generations of bulk polyamidoamine (PAMAM) dendrimers, having nominal molecular weights from about 500 to over 116 000, was investigated under steady shear, shear creep, and dynamic oscillatory shear within the temperature range from T g + 15 °C to Tg + 105 °C. It was found that these dendrimers exhibit (a) constant viscosity at small deformations regardless of the type of stress applied and (b) temperature-/generation-dependent non-Newtonian response at higher shear rates/frequencies. The latter was characterized by finite moduli of elasticity at all generations and by onset of complex-viscosity thinning at some generation-dependent critical temperature and shear frequency. These results represent the first observation of elasticity in one dendrimer family, and they indicate that at rest in bulk these dendrimers collapse, deform, and organize into transient, secondary (i.e., hydrogen)-bonded, quasi-network supramolecular microstructure. They also reveal a distinct change from single-relaxation-mode to a multirelaxation-mode Maxwell-type behavior at generation 4, which is consistent with the closure of dendrimer molecular surface upon itself and the earlier proposed soft interior-dense shell model of intramolecular dendrimer morphology. Further support for this model resulted from an analysis of dendrimer free volume, which exhibited significant contribution not only from the dendrimer end groups but also from their interior building blocks. To account for these observations, a model is proposed that involves dynamics of structural elements that are smaller than the overall dendrimer molecules.
A series of novel hyperbranched hydrogen-bond acidic polymers for surface acoustic wave (SAW) sensor applications were prepared by functionalizing hyperbranched polycarbosiloxanes or polycarbosilanes with phenol or hexafluoro-2-propanol groups. Starting polymer, sensor polymer, and reagent structures were confirmed by IR, 1 H, 13 C, and 29 Si NMR, SEC, or GCMS as appropriate. The hyperbranched sensor polymers were coated onto 500 MHz SAW platforms and their responses to the nerve agent simulant dimethyl methylphosphonate (DMMP) were studied. The hyperbranched sensor polymers with phenol groups gave very high initial responses to DMMP which dropped to 30% of the initial levels over a period of 6 months, and the hyperbranched sensor polymers with hexafluoro-2-propanol groups gave lower initial responses that did not change with time. Hence, the long-term performances of hyperbranched phenolic sensor polymers and hyperbranched hexafluoro-2-propanol sensor polymers were found to be comparable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.